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ABSTRACT

We outline the theory and practice of measuring the four Stokes parameters of spectral lines in
emission/absorption observations. We apply these concepts to our Arecibo H i absorption line data and present
the results. We include a detailed discussion of instrumental effects arising from polarized beam structure and its
interaction with the spatially extended emission line structure. At Arecibo, linear polarization [Stokes (Q, U )] has
much larger instrumental effects than circular (Stokes V ). We show how to reduce the instrumental contributions
to V and to evaluate upper limits to its remaining instrumental errors by using the (Q, U ) results. These efforts
work well for opacity spectra but not for emission spectra. Arecibo’s large central blockage exacerbates these
effects, particularly for emission profiles, and other telescopes with weaker sidelobes are not as susceptible. We
present graphical results for 41 sources; we analyze these absorption spectra in terms of Gaussian components,
which number 136, and present physical parameters including magnetic field for each.

Subject headings: polarization — radio lines: ISM — surveys

On-line material: additional figures, machine-readable table

1. INTRODUCTION

In 1999 February we used the Arecibo1 telescope to begin a series of Zeeman-splitting measurements of the 21 cm line in
absorption against continuum radio sources. Heiles & Troland (2003a, 2003b, hereafter Paper I and Paper II ) reported on a by-
product of this survey, namely the Stokes I data from which spin temperatures and other information were derived. The present
paper focuses on the technical aspects of processing the polarized spectral data and evaluating the instrumental errors. We also
present the derived magnetic fields for 41 sources, which have 136 Gaussian components.

There has been much discussion of H i Zeeman splitting measurements because the polarized sidelobes, interacting with the
angular structure of the H i emission, can produce instrumental effects. Even in the emission-absorption measurements presented in
this paper, these effects can in principle be serious. Therefore, we discuss these effects in considerable detail. The bottom line is that
instrumental effects are evaluated for each source independently and, generally, are negligible for the opacity spectra. However, for
the expected emission spectra they are not negligible.

Section 2 outlines the basic theoretical concepts involving Stokes parameters and emission/absorption lines. Section 3 discusses
the least-squares fitting process required to extract the expected emission profile and the absorption spectrum by combining
calibrated on- and off-source data. Section 4 discusses the physical reasons for and contributors to instrumental effects that arise
from polarized beam structure.

The next three sections deal with instrumental contributions to the opacity spectra. We begin by treating Stokes V in x 5,
discussing the empirical least-squares evaluation and elimination of the two most basic instrumental effects, namely the trigo-
nometric dependences on parallactic angle PA and 2PA (squintlike and squashlike dependences, respectively). We use the terms
‘‘squintlike’’ and ‘‘squashlike’’ for these empirically determined dependencies because they include contributions from far-out
sidelobes; in contrast, we use the terms ‘‘squint’’ and ‘‘squash’’ (sometimes preceded by the clarifier ‘‘true’’) for the contributions
from only the primary beam and first sidelobe.2 We then do the same in x 6 for the linearly polarized Stokes parameters (Q, U ). We
reach the important conclusion that instrumental effects in linear polarization are about 10 times larger than in circular. This allows
us to make an independent estimate of instrumental effects for V using (Q, U ), as we discuss explicitly in x 7.

Our final discussion of instrumental effects (x 8) addresses the reliability of Zeeman splitting results for emission profiles. Here
we independently evaluate ‘‘true’’ squint and squash and also the squintlike and squashlike contributions. The difference between
these is the contributions from the far-out sidelobes. The far-out sidelobe contribution is large for the Arecibo telescope. This
makes the instrumental effects quite serious for emission profiles. Accordingly, we do not discuss the Zeeman splitting results for
the emission profiles.

1 The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement
with the National Science Foundation.

2 The terms squint and squash normally refer to only to the main beam, not including the first sidelobe.
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Finally, x 9 presents the profiles for all sources and a tabular list of the results for the Gaussian components. We select a good
sample for statistical analyses, successfully compare with previous literature, and point out yet another source of uncertainty in the
derived magnetic fields.

2. STOKES PARAMETERS OF SPECTRAL LINES IN EMISSION/ABSORPTION

2.1. The ON and OFF Spectra

Consider a particular polarization, which we designate by the subscript p. For the two circulars we have p ¼ LCP or p ¼ RCP,
while for the linears we have p ¼ position angle. In the presence of a continuum source that provides antenna temperature Tsrc; p,
the on-source antenna temperature is

Tsrc; p(�) ¼ Texp; p(�)þ Tsrc; pe
��p(�); ð1Þ

where Texp; p(�) is the ‘‘expected profile,’’ which is the emission that would be observed in the absence of the source, and �p(�) is
the 21 cm line opacity, which depends on polarization; both of these are functions of frequency because of the spectral line. The
appended symbol (�) indicates frequency-dependent quantities within the profile; unappended temperatures are continuum.

We form Stokes parameters for the on-source antenna temperature from arithmetic combinations of orthogonal polarizations ( p,
p?). We designate the Stokes parameters Isrc, Qsrc, Usrc, and Vsrc with the general symbol Ssrc; i, with i ¼ 0 ! 3, respectively; the
subscript ‘‘src’’ designates on-source ‘‘antenna’’ Stokes parameters, derived from on-source antenna temperatures. This gives for
Stokes Isrc

Ssrc;0(�) ¼ ½Texp; p(�)þ Texp; p? (�)� þ ½Tsrc; pe��p(�) þ Tsrc; p?e
��p?(�)�; ð2aÞ

and for Stokes (Qsrc;Usrc;Vsrc)

Ssrc;i(�) ¼ ½Texp; p(�)� Texp; p? (�)� þ ½Tsrc; pe��p(�) � Tsrc; p?e
��p?(�)�; (i ¼ 1 ! 3): ð2bÞ

Here and below, (i) implies i ¼ 1 ! 3 unless otherwise noted, and p must correspond correctly with i.
We define

�0(�) �
�p(�)þ �p? (�)

2
; ð3aÞ

and we assume that the spectral line exhibits small polarization, i.e.,

�i(�) � �p(�)� �p? (�)T1; ð3bÞ

where again p must correspond correctly with i. Then we expand equations (2a) and (2b) and retain only the lowest order terms in
�i, which are zeroth order for equation (2a) and first order for equation (2b). This gives

Ssrc;0(�) ¼ ½Texp; p(�)þ Texp; p? (�)� þ ½Tsrc; p þ Tsrc; p? �e��0(�); ð4aÞ

Ssrc;i(�) ¼ ½Texp; p(�)� Texp; p? (�)� � �i(�)
½Tsrc; p þ Tsrc; p? �

2
e��0(�) þ ½Tsrc; p � Tsrc; p? �e��0(�): ð4bÞ

It is clearer to write the above expressing the temperature sums and differences in terms of their Stokes parameters, which are the
appropriate sums and differences of antenna temperatures:

Ssrc;0(�) ¼ Sexp;0(�)þ Ssrc;0e
��0(�); ð5aÞ

Ssrc; i(�) ¼ Sexp; i(�)� �i(�)
Ssrc;0

2
e��0(�) þ Ssrc;ie

��0(�): ð5bÞ

Again, quantities subscripted with ‘‘exp,’’ like Sexp; i(�), are the frequency-dependent expected profile, i.e., what is expected to be
observed at the source position if its continuum flux were zero; quantities subscripted with ‘‘src,’’ like Ssrc;0, are frequency-
independent properties of the continuum source.

Equation (5b) for the polarized Stokes parameters Si consists of three terms:

1. The Brst term is the polarization of the expected emission proBle.
2. The second term represents the polarized portion of the optical depth �i(�) multiplying the attenuated Stokes Isrc (or Ssrc;0)

antenna temperature of the continuum source. For Zeeman splitting, this is the quantity of interest!
3. The third term represents the ordinary line opacity operating on the polarized Stokes Q, U, V (or Si) antenna temperature of the

continuum source.
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2.2. The ON-OFF Spectra

For Stokes I, consider equation (5a) and assume, for the moment, that the spatial derivatives of Sexp;0(�) are zero. Then the two
unknowns Sexp;0(�) and e��0(�) are easily separated observationally by taking on-source and off-source measurements, for which
Ssrc;0 changes from zero to the full source intensity. More generally the spatial derivatives are nonzero; moreover, Arecibo has
significant sidelobes and we can never go completely off the source. We account for these and other details by writing more
complicated versions of equation (5a) and subjecting them to least-squares analyses. This is discussed in detail in x 2 of Paper I.

Now consider the polarized Stokes parameters in equation (5b) and assume that the spatial derivatives of their expected emission
profiles are zero. Then the combination of the second and third terms is easily obtained by subtracting the on-source and off-source
measurements (ON–OFF). Below, as we did for I, we will account for details using least-squares fits to more complicated
equations. The third term in equation (5b) is of little intrinsic interest because it reveals no new information: it is simply the line
opacity operating on the polarized flux. This term is often large for Stokes Q and U because radio continuum sources often exhibit
significant linear polarization.

In contrast, the second term is of vital importance. In circular polarization it is nonzero because of Zeeman splitting. In linear
polarization it reveals a correlation between the spatial structures of the H i and the radio source Stokes parameters. Specifically, the
more highly polarized parts of the source produce larger fractional contributions to the polarized opacity profile. Unfortunately,
instrumental effects also contribute to the second term; we discuss these in x 4.

2.3. The Particular Case of Zeeman Splitting

Zeeman splitting is characterized by a frequency difference between the two circular polarizations, so are concerned with the
subscript i ¼ 3. From now on we will write the subscripts with the conventional notation (Q, U, V ) instead of (1, 2, 3). We have

�V (�) ¼
d�0(�)

d�
��Z : ð6Þ

As is well known, for the 21 cm line ��Z ¼ 2:8Bk Hz, where Bk is the line-of-sight field strength in �G. To focus on the opacity
spectrum, we consider only the source terms in equations (5a)–(5b) [i.e., we set Sexp;0(�) ¼ 0] and we assume no continuum
circular polarization (i.e., we set Vsrc ¼ 0). Writing the usual I for S0 and V for S3, we have

Isrc(�) ¼ Isrce
��0(�); ð7aÞ

Vsrc(�) ¼ � Isrc

2
e��0(�)�V (�); ð7bÞ

or, in the most observationally relevant form,

Vsrc(�) ¼
d Isrc(�)=2½ �

d�
��Z : ð8Þ

This is exactly the same equation that applies to the optically thin emission case.
We recount this simple derivation to elucidate any possible confusion about the role of Stokes I opacity in deriving ��Z . This

opacity weakens the V spectrum; in particular, the effect of the opacity difference �V (�) is weakened by the factor exp ��0(�)½ �, and
one might have expected this weakening to reduce the derived value of ��Z . This derivation shows that using equation (8) provides
the correct values of ��Z under any circumstances, emission or absorption.

3. EXTRACTING POLARIZED PROFILES FROM CALIBRATED SPECTRAL DATA

3.1. Stokes I

Paper I discussed our observing technique and the least-squares fit for the Stokes I expected profile, its spatial derivatives, and
the opacity profile. We observed a series of N ‘‘patterns,’’ denoted by the subscript n. Each pattern consists of a series of J
measurements (subscript j), one being on-source and the others being off-source displaced in different directions. This allows us to
determine spatial derivatives, which was important for the analysis of the Stokes I profiles done in Paper II. Here we are concerned
with the polarized Stokes parameters, which are themselves detectable only with low signal/noise and for which the spatial
derivatives are expected to be undetectable. Therefore, to begin our discussion we rewrite equation (8) in Paper I without the spatial
derivative terms, obtaining a slight generalization of equation (1) above:

Tant; n; j(�) ¼ ½Texp(�)� þ ½e��(�)�Tant; n; j: ð9Þ

The quantity Tant; n; j, without the appended symbol (�), is the excess continuum antenna temperature over cold sky, which is usually
nonzero even for off-source measurements because (1) the telescope sidelobes respond to the source, (2) the off position can lie
within the primary beam, and (3) diffuse continuum emission that happens to lie in the source direction also contributes. Tant; n; j(�)
includes the effects of the H i line, while Tant; n; j does not—it is only the continuum contribution. Tant; n; j(�) is the antenna temperature,
i.e., the input to the receiver.
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This equation applies to antenna temperatures measured in a particular polarization. Therefore, it also applies to sums and
differences of antenna temperatures in orthogonal polarizations, i.e., the Stokes parameters. For Stokes I the equation barely
changes. However, the polarized Stokes parameters are slightly more involved.

3.2. Stokes V

First we treat the simpler case of Stokes V. When we form V by subtracting RCP from LCP, the left-hand side of equation (9)
becomes the measured value Vant; n; j(�). In general, both the source and �(�) are polarized, so the equation becomes

Vant; n; j(�)� Vant; n; je
��0(�) ¼ ½Vexp(�)� �

"
�V (�)e

��0(�)

2

#
Iant; n; j þ ½�Vn; j(�)�; ð10aÞ

where, as in equation (5b), we retain only first-order terms. Also, we have added an instrumental contribution ½�Vn; j(�)�, which we
discuss below. Again, the square brackets indicate quantities to be solved for by least squares. In a least-squares analysis we need
on one side of the equation all of the unknowns, and none of the knowns, which is why we transferred the quantity Vant; n; je

��0(�) to
the left-hand side; both factors are known reasonably accurately from the observations. To make the equations more concise, which
is convenient for later discussion, we make two definitions. First, we define the quantity

½� 0
V (�)� � � �V (�)e

��0(�)

2

" #
; ð10bÞ

which is the fractional circular polarization of the source’s absorbed flux (V (�)=Isrc in eq. [7b]), useful because it is proportional to
the frequency derivative of I(�). Second, we define V 0

sky; n; j(�) to be the first two terms on the right-hand side of equation (10a), i.e.,

½V 0
sky; n; j(�)� ¼ ½Vexp(�)� þ ½� 0

V (�)�Iant; n; j: ð10cÞ

so that equation (10a) becomes

Vant; n; j(�)� Vant; n; je
��0(�) ¼ ½½V 0

sky; n; j(�)�� þ ½�Vn; j(�)�; ð10dÞ

where the double brackets around ½½V 0
sky;n; j(�)�� serve as a reminder that this term contains more than one unknown quantity. The

left-hand side contains the measured quantities: Vant;n; j(�) is the channel-by-channel V spectrum, while Vant;n; j (no � dependence) is
the continuum value, obtained from the off-line channels. Similarly, Iant;n; j on the right-hand side is the Stokes I continuum value,
also from the off-line channels.

For each spectral independently, the quantities in square brackets are straightforwardly solved by least squares, except for the
instrumental contributions ½�Vn; j(�)� for which the word ‘‘straightforwardly’’ does not necessarily apply. We either ignore this
contribution and estimate its magnitude, as discussed in x 8.2, or assume a functional dependence on parallactic angle and include
this in least-squares fits (x 5).

3.3. Stokes Q and U

A discussion similar to that of x 3.2 applies to Stokes Q and U, but it becomes more complicated because the measured values
depend on parallactic angle PA, which changes with hour angle. That is, including the instrumental error terms we have

Qant; n; j(�)

Uant; n; j(�)

� �
¼ Rn =

Qsky; n; j(�)

Usky; n; j(�)

� �
þ

�Qn; j(�)

�Un; j(�)

� �
; ð11aÞ

where

Rn ¼
cos 2PAn sin 2PAn

� sin 2PAn cos 2PAn

� �
: ð11bÞ

Here we neglect the change in PA during a pattern, so the terms are subscripted only with n. As in the above discussion for V, for
the purpose of the least-squares fit we must retain all of the unknowns, and none of the knowns, on the right-hand side of the
equation. For the least-squares fit, the required equation is the analogy to equation (10d)

Qant; n; j(�)

Uant; n; j(�)

� �
� Rn =

e��0(�)Qsky; n; j

e��0(�)Usky; n; j

" #
¼ Rn =

""
Q0

sky; n; j(�)

U 0
sky; n; j(�)

##
þ

½�Qn; j(�)�
½�Un; j(�)�

� �
: ð12Þ

We remind the reader that Qsky; n; j (no � dependence) is the continuum value obtained from the off-line channels and is known quite
accurately. The quantity Q0

sky(�), with the prime, is defined analogously to that for V 0
sky(�) in equation (10c). As with V, the
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quantities (not the matrices) in square brackets are solved by least squares. We either ignore the instrumental contributions and
estimate their magnitudes, as discussed in x 8.2, or include their dependences on PA in the least-squares fit (x 6.2).

For the continuum values of (Q, U ), the major contributor to (�Q, �U ) is zero offsets. We measure two polarized Stokes
parameters, Stokes U and V, by cross-correlating the voltages of orthogonal polarizations and the third, Stokes Q, by differencing
the powers of orthogonal polarizations (Heiles 2001). The last is particularly susceptible to instrumental problems, primarily a
frequency-independent zero offset, both because the receiver temperatures differ and because the gains of the two polarizations are
not perfectly calibrated. The shape of the spectrum can also be changed by the introduction of a weak replica of the Stokes I
spectrum, but we ignore this because it is indeterminate. Even the cross-correlation spectra have small offsets because of in-
strumental coupling between the two channels, and these depend slightly on the Stokes I-value because of errors in the Müller
matrix coefficients (see Heiles et al. 2001b).

These offset errors are frequency independent, so they affect only the continuum values. �Un; j, which is determined by cross-
correlation, is smaller and more nearly constant than �Qn; j. In equations (10d) and (12), the quantities enclosed in square brackets
are unknown and need to be determined by least-squares fitting. The number of unknowns is awkwardly large, as was the case for
equation (9) in Paper I, and for the same reasons. We apply the same iterative technique here, namely neglecting the n-dependence
of Qsky; j(�) and Usky; j(�) and first solving for the set of J-values for each spectral channel individually, and then solving for the NJ-
values of �Qn; j and �Un; j using all channels and measurements simultaneously. Having done this, we correct the measured
Qant; n; j(�), Uant; n; j(�)-values by subtracting the frequency-independent offsets �Qn; j and �Un; j and use those corrected values to
proceed with the least-squares solution of equation (12), including frequency-dependent instrumental contributions as discussed
in x 5.

4. INSTRUMENTAL PROBLEMS WITH POLARIZED STOKES PARAMETERS: GENERAL DISCUSSION

This section discusses the most important instrumental contributions to instrumental polarization. Polarized opacities are small,
so we must consider systematic effects at very low levels. The most important contributors include the following:

1. There is instrumental coupling between the polarized Stokes parameters and Stokes I, which creates replicas of the Stokes I line
in the polarized Stokes parameter spectra. These couplings are described by the Müller matrix (Heiles et al. 2001b) and are corrected
for, but the corrections are imperfect.

Experience teaches us that this is usually the dominant instrumental contribution to the measured Stokes V spectra, typically
amounting to a few tenths of a percent. Fortunately, in deriving Zeeman splitting its presence is unimportant: observers normally call
this a ‘‘gain error’’ and use a least-squares technique to remove it.

2. The Müller matrix is derived from observations of small-diameter continuum sources, so it applies to beam center. However, it
changes within the telescope beam. For Stokes V the primary eAect is ‘‘beam squint,’’ for which the V beam has positive and negative
lobes on opposite side of beam center. This arises from the two polarizations pointing in slightly diAerent directions. Beam squint
interacts with the first spatial derivative of the Stokes I profile to produce a false contribution. We assume that the beam squint is
fixed with respect to the feed, so its false contribution varies periodically with the parallactic angle PA.

Beam squint is theoretically predicted to occur for Stokes V but not for Q and U. However, Arecibo has significant beam squint in
Q and U as measured by the response to the first spatial derivative in Stokes I; it is probably produced by the significant aperture
blockage. Figures 12, 13, and 14 of Heiles et al. (2001a) show that the eAective beam squint for both Q and U is about 10 times that
for V.

Beam squint correlates with the angular structure in the emission line to produce unreal features in the polarized Stokes emission
and absorption spectra. Experience shows that for Stokes V, beam squint interacting with the first derivative of H i intensity is the
most serious instrumental problem (Heiles 1996). For conventional telescopes this contribution can be measured and removed rather
accurately. For the Arecibo telescope, however, the polarized beam pattern changes partly systematically, partly erratically with hour
angle, making the correction impractical.

We can estimate the magnitude of this contribution from the measured angular derivatives of the Stokes I expected profile and the
approximately known magnitude of the beam squint (x 8.2). Also, we can determine the approximate contribution by fitting for the
change in the apparent polarized opacity spectrum as the polarized beam rotates with respect to the sky with hour angle (x 5).
However, because Arecibo’s beam characteristics, including squint, change while tracking, the squint contribution varies not only
with PA but also has a semirandom component. We least-squares fit equations (13a)–(13b) for the systematic squint component, as
discussed below, but the semirandom component remains.

3. For Stokes Q and U, the primary eAect for the polarized beam is ‘‘beam squash,’’ for which the polarized beams have a four-
lobed cloverleaf pattern, with two positive lobes on opposite side of beam center and two negative ones rotated 90�. This arises from
the two polarizations having slightly diAerent beam widths. Beam squash interacts with the second spatial derivative of the Stokes I
emission profile to produce a false contribution that varies periodically with twice the parallactic angle 2PA.

Beam squash is theoretically predicted to occur for Stokes Q andU, but not for V. However, Arecibo, with its significantly blocked
aperture, violates this rule. As with beam squint, Figures 12, 13, and 14 of Heiles et al. (2001a) show that Arecibo’s eAective beam
squash for both Q and U is about 10 times that for V.

For StokesV, most telescopes have negligible beam squash, so our experience with them does not apply to Arecibo.We can estimate
the magnitude of the squash contribution from themeasured angular derivatives of the Stokes I expected profile and the approximately
known magnitude of the beam squash (x 8.2). Also, we can approximately determine the contribution by fitting for the change in the
apparent polarized spectrum as the polarized beam rotates with respect to the sky with hour angle (x 5); this works well for the opacity
spectrum. However, it does not work well for the expected emission spectrum because of the incomplete PA coverage (x 8).

For Stokes Q and U we can estimate the squash contribution from the measured spatial derivatives and the known beam squash.
However, we cannot determine it by fitting for the change with 2PA because real linear polarization also varies with 2PA.
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4. All four Stokes parameters are aAected by ‘‘far-out sidelobes,’’ i.e., sidelobes outside the first sidelobe. These arise primarily
from ordinary diAraction and, secondarily, from surface inaccuracies. Far-out sidelobes for Arecibo are particularly strong because of
the severe aperture blockage; and they contribute disproportionately to the squint and squash response. They are likely to be polarized
comparably to the first sidelobe, and the H i spatial structure within them changes more because the angular diAerences are larger; this
magnifies their importance. The first sidelobe itself serves as an illustration: for a uniform extended source in Stokes I, it contributed
0.34 as much as the primary beam in 20003); yet in Stokes V it contributed almost twice as much to the observed squint response as
does the primary beam! (see Table 1 and Figure 14 of Heiles et al. 2001a).

Far-out sidelobes can, like squint and squash, be expressed as a Fourier series in PA. The first term is squintlike, and the second is
squashlike. Below, we use the terms ‘‘squintlike’’ and ‘‘squashlike’’ to denote the contribution from the telescope, i.e., from the
primary beam and all sidelobes, and unless the context dictates otherwise we use the terms ‘‘squint’’ and ‘‘squash’’ to denote the
contributions from the primary beam and first sidelobe.4

Contribution (1) produces only a replica of the Stokes I opacity profile; in Zeeman splitting this is routinely removed by least-
squares fitting and has no damaging effect. Accordingly, we do not consider it further.

The contributions (2), (3), and (4) exhibit sinusoidal dependences on either PA (squintlike) or 2PA (squashlike). There are two
independent ways to evaluate these contributions, each with its own problem. The empirical way (x 5) is observing a range of PA
and performing a least-squares fit on the results to directly evaluate (and remove) the sinusoidal dependences; the problem,
especially for the emission profile, is the incomplete PA coverage. The other way (x 8.2) predicts the instrumental effects using the
angular derivatives of the H i structure in the sky, together with the already known polarization structures of the Arecibo beam; the
problem is the neglect of the far-out sidelobe contribution. We turn to a detailed discussion of these issues in the next few sections.

5. EMPIRICAL EVALUATION OF SQUINTLIKE AND SQUASHLIKE
CONTRIBUTIONS TO STOKES V OPACITY SPECTRA

Squintlike structure in the Stokes V polarized beam interacts with the first spatial derivative of the Stokes I profile to produce a
false contribution to V that varies periodically with the parallactic angle PA, and squashlike structure interacts with the second
spatial derivative to produce a contribution that varies periodically with 2 PA. Here we follow Heiles (1996) in using least-squares
fitting to empirically evaluate both contributions. If we had complete and uniform PA coverage these fits would be straightforward,
but this is not the case.

Beam squintlike and squashlike structure produce instrumental contributions �Vn; j(�) ¼ Vsqnt; n; j(�) and Vsqsh; n; j(�), respec-
tively, where �Vn; j(�) is the instrumental contribution in equation (10d). We parameterize these as follows:

Vsqnt;n(�) ¼ ½Vsqnt;cos(�)� cos (PAn)þ ½Vsqnt;sin(�)� sin (PAn); ð13aÞ

Vsqsh;n(�) ¼ ½Vsqsh;cos(�)� cos (2PAn)þ ½Vsqsh;sin(�)� sin (2PAn): ð13bÞ

Again, the square brackets indicate the unknown quantities to be determined by least squares. Note that the continuum quantities
do not appear in this equation; this is because the squint and squash contributions arise only from the H i emission in the vicinity of
the source (as long as the continuum source is small compared to the beam), so the source intensity is irrelevant. Moreover, we are
assuming no spatial gradients in Vsqnt; cos and Vsqnt; sin, so have dropped the subscript j.

Least-squares fitting equations (10a)–(10d) allows us to solve for six unknowns, i.e., the two contained in V 0
sky(�) in equation

(10c) together with the four instrumental ones in equations (13a)–(13b), as long as we cover a sufficiently large range in PA. At
Arecibo, the maximum PA range is �180�; for other alt-az telescopes, a significantly larger range is available only for sources that
are nearly circumpolar.

Figure 1 shows the PA coverage for our example of 3C 138, which is unusual in having rather sparse PA coverage. This sparse
coverage occurs for two reasons: first, the declination of 3C 138 differs from Arecibo’s latitude by only �2

�
, which means that the

PA changes rapidly near transit. Thus, as the source is observed and the PA increases from �90� to �270� (same as �90�), a broad
band of PA centered near 180� is not sampled. Second, the exigencies of scheduling meant that it received little time at negative
hour angles. Most sources have more complete coverage. We choose 3C 138 as the example because its incomplete PA coverage
highlights the associated difficulties and because the angular derivatives of brightness temperature are unusually high, which
exacerbates instrumental effects.

The incomplete PA coverage has different ramifications for the derived expected and opacity profiles:

1. For the expected emission spectrum Vexp(�) the eAects of incomplete PA coverage are serious. Five terms in equation (10a) are
independent of being on- or oA-source. These are the five emission-profile terms, namely, Vexp(�) in equations (10a)–(10d) and the
four terms in equations (13a)–(13b). These five terms constitute the first three frequency components of a sin /cosine Fourier series
with real coeDcients. If the PA coverage were complete and uniform, covering the full range of 360

�
with uniform sampling, then the

least-squares solution of equation (10a) would be identical to a regularly sampled Fourier transform in which the five terms are
orthogonal and therefore independent. The incomplete coverage ofP180� is a problem because it removes this orthogonality. The
nonorthogonality produces coupling between all five terms and, also, extra noise. We will refer to this problem in the ensuing
discussion under the rubric ‘‘covariance.’’

2. For the opacity spectrum � 0
V (�) the eAects of incomplete PA coverage are much less serious. The reason is simply that � 0

V (�) is,
fundamentally, the ON-OFF spectrum and the continuum source is strong: the PA coverage enters only peripherally. There is little
covariance between � 0

V (�) and the other five terms discussed above.

3 Arecibo’s surface was readjusted and the focus point changed in 2002. The current fraction is much lower,P0.10.
4 To be precise, true squint and squash refer only to the main beam without the first sidelobe. But Heiles et al. (2001a) measured the influence of both—for

Arecibo, the first sidelobe is large because of the large aperture blockage. For this reason, in this paper we stretch the definition of ‘‘true.’’
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5.1. Stokes V: General Discussion

We have our choice in what to include for �Vn; j(�) in the least-squares fits to equations (10a)–(10d). We could fit by ignoring
both the squintlike and squashlike contributions, i.e., setting �Vn; j(�) ¼ 0; we denote these solutions for the two unknowns
Vexp(�) and �

0
V (�) in equation (10d) with the additional subscript 0. We could include only the squintlike terms in Vsqnt(�), for which

we have four unknowns (the original two plus ½Vsqnt;cos(�)� and ½Vsqnt;sin(�)�), for which the additional subscript is 1; or we could
include both squintlike and squashlike terms, for which we have six unknowns and the additional subscript is 2.

The instrumental contributions in these three cases are most concisely expressed by matrix equations that give the contribution to
the two derived quantities [Vexp(�) and � 0

V (�)] in equations (10a)–(10d) in terms of the two true ones and, in addition, the four true
squint and squash ones in equations (13a)–(13b). Here, by ‘‘true’’ we mean the values that actually occur, which are not equal to
the ones derived by the least-squares fit because of the covariance caused by incomplete PA coverage. We calculate these matrix
elements by inserting known artificial signals into the data and calculating the resulting contributions. For example, to evaluate the
effect of Vsqsh;cos; true, we insert the artificial signal cos (2PAn; j) into spectral channel number 2 (which contains no useful
astronomical information) and process it identically to the other spectral channels; the resulting values of � 0

V , Vexp, etc., provide the
corresponding matrix elements. The matrix elements are the approximate coupling coefficients between a given derived quantity,
such as � 0

V , and the squintlike and squashlike instrumental effects as embodied in, for example, Vsqsh;cos; true. These coefficients
differ for each source because of the differing PA coverage. In these fits, we assume �0(�) ¼ 0; the matrix elements depend
somewhat on �0(�), so the particular values shown below are only representative.

We outline the three cases in the following subsections.

5.1.1. Least-Squares Fitting Including neither Squint nor Squash

First, we derive � 0
V;0(�) and Vexp;0(�) by not fitting for squint and squash, i.e., by least-squares fitting equation (10d) setting the

instrumental �Vn; j (�) ¼ 0. For 3C 138, this gives

� 0
V ;0

Vexp;0

� �
¼

1:01 6:8E� 5 K�1 �6:7E� 5 K�1 �1:1E� 5 K�1 �2:1E� 5 K�1 �3:3E� 5 K�1

þ3:8 K 0:98 �0:29 �0:21 �0:74 þ0:12

" #

;

� 0
V ; true

Vexp; true

Vsqnt;cos; true

Vsqnt ;sin; true

Vsqsh;cos; true

Vsqsh;sin; true

2
666666664

3
777777775
: ð14Þ

First we discuss � 0
V ;0, whose matrix elements are in the first row. The first matrix element, 1.01, reflects the fact that our least-

squares solution for � 0
V ;0 actually works and returns the correct value. The second expresses the contribution of real Zeeman

splitting in the expected emission profile [Vexp(�)] to the derived � 0
V ;0, and the remaining ones express the instrumental (fake)

contributions arising from the polarized beam interacting with spatial derivatives in [I(�)]. The numerical values for these last
five matrix elements have upper limits, which we obtain as follows. From equations (7b) and (10b), we find that the opacity
� 0
V (�) ¼ V (�)=Isrc. For 3C 138, Isrc � 116 K, so in calculating � 0

V ;0(�) the instrumental contribution V (�) gets multiplied by
�1=116 ¼ 8:5 ; 10�3 K�1. This is the upper limit for the last five matrix elements, and it is well above the actual values.

Fig. 1.—Trigonometric functions (solid line, cosine; dashed line, sine) of PA and 2 PA vs. PA. The squares and diamonds depict the actual observed PA-values for
3C 138 and illustrate the absence of complete coverage.
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In particular, all of the matrix elements on the first row (except the first) are inversely proportional to the continuum source
intensity: the stronger the source, the weaker the instrumental contribution to � 0

V . This large reduction in instrumental effects is one
reason why Arecibo, with its huge collecting area, is the instrument of choice for these single-dish absorption studies.

Now we discuss Vexp;0, whose matrix elements are in the second row. Again, the second matrix element, 0.98, reflects the fact
that our least-squares solution for Vexp(�) returns the correct value. Regarding the squint and squash terms, this least-squares
calculation of Vexp;0 ignores all PA variation and is therefore equivalent to an average of all the measured values. The third matrix
element (which multiplies Vsqnt;cos; true) equals �0.29. This must equal the average value of cos (PA) because any nonzero value of
Vsqnt;cos; true contributes this fractional amount in a straight average. Visual inspection of Figure 1 confirms this expectation.
Similarly, the sine component Vsqnt;cos; true equals �0.21. This component has the possibility of being nearly zero if the source has
symmetric hourangle coverage, because sin (PA) is antisymmetric; indeed, this is the case for many of our sources—but not for
3C 138 because of the exigencies of scheduling.

5.1.2. Least-Squares Fitting Including Squint but not Squash

Next, we least-squares fit equation (10d) including only the two squintlike terms in equations (13a)–(13b) and ignoring squash.
The matrix becomes

� 0
V ; 1

Vexp; 1

Vsqnt;cos; 1

Vsqnt;sin; 1

2
6664

3
7775 ¼

1:01 þ6:8E� 5 K�1 �5:4E� 5 K�1 �7:2E� 5 K�1 �4:8E� 5 K�1 �9:1E� 6 K�1

þ4:7 K 0:99 0 0 �1:33 �0:10

þ3:1 K 0:02 0:98 0 �2:02 �0:40

�0:2 K 0 0 0:99 0 �0:48

2
6664

3
7775

;

� 0
V ; true

Vexp; true

Vsqnt;cos; true

Vsqnt;sin; true

Vsqsh;cos; true

Vsqsh;sin; true

2
666666664

3
777777775
: ð15Þ

First we discuss � 0
V ;1. Comparison of the third and fourth elements in the top rows of equations (14) and (15) shows that including

the squint changes the contributions to � 0
V ;1 by factors of 0.8 and 6.5 for the cosine and sine components, respectively. The sine

component contributes more to � 0
V ;1 than to � 0

V ;0, which is surprising. As we noted above, 3C 138 has asymmetric PA coverage;
sources having more nearly symmetric PA coverage exhibit large reductions in the squint contribution to � 0

V ;1. For example, 3C 207
has nearly symmetric coverage and the factors above are much smaller—0.3 and 0.02, respectively.

Now we discuss Vexp;1. Because we explicitly fit for them here, the Vexp;1(�) (second row) matrix elements of both components
of Vsqnt;true (i.e., the third and fourth elements) are essentially zero. However, there is a large covariance between cos (PA) and
cos (2PA) for the incompletely sampled PA range, which leads to the large value of �1.33 for the matrix element for Vsqsh;cos;true. It
is surprising that this element exceeds unity. Similarly, the last two matrix elements for Vsqnt; cos ;1 also exceed unity. Such surprises
can occur when fitting nonorthogonal functions with high covariance (these functions being the incompletely sampled trigono-
metric functions of PA and 2PA).

5.1.3. Least-Squares Fitting Including both Squint and Squash

Finally, we least-squares fit equation (10d) including both the two squintlike and squashlike terms in equations (13a)–(13b).
Then we get

� 0
V ; 2

Vexp; 2

Vsqnt;cos;2

Vsqnt;sin;2

Vsqsh;cos;2

Vsqsh;sin;2

2
666666664

3
777777775
¼

1:01 þ6:8E� 5 K�1 �5:4E� 5 K�1 �7:2E� 5 K�1 �6:3E� 5 K�1 þ1:1E� 5 K�1

þ4:4 K 1:02 0 þ0:01 �0:05 �0:01

þ2:7 K þ0:06 0:98 þ0:01 �0:08 �0:01

0 K þ0:01 0 1:00 �0:01 �0:01

�0:3 K þ0:02 0 0 0:96 0

þ0:3 K 0 0 þ0:02 �0:01 0:98

2
666666664

3
777777775

<

� 0
V ; true

Vexp; true

Vsqnt;cos; true

Vsqnt;sin; true

Vsqsh;cos; true

Vsqsh;sin; true

2
666666664

3
777777775
: ð16Þ
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For � 0
V; 2, including squash gives a modest degradation for the two squash terms (the last two matrix elements in the top row). More

impressively, for Vexp; 2 the large squash contributions to Vexp;1 in equation (15) (the last two matrix elements in the second row) are
changed by factors of �0.04 and 0.1. This desired elimination of the squint and squash contributions to Vexp; 2 comes at a heavy
price. As we shall see in x 8 and Figure 5, the spectrum Vexp; 2 is much noisier than for Vexp; 0 and Vexp; 1; unfortunately, this means that
we cannot provide reliable Stokes V spectra for the emission spectra. The excess noise is again the covariance caused by the
incomplete PA coverage. As is true with any least-squares fit, coefficients having high covariance are determined with large errors.

Comparison of the above matrices shows that we can significantly improve our resistance to instrumental effects by observing as
full and complete PA range as possible. Because most sources have better complete PA coverage than 3C 138, their opacity profiles
� 0
V ; 2 have smaller instrumental contributions than either � 0

V;0 or �
0
V;1. Accordingly, we shall include both squintlike and squashlike

terms in the fit to equation (10d) and always present � 0
V; 2. The derived quantity � 0

V; 2 automatically has the squintlike and squashlike
contributions removed.

5.2. Instrumental Contributions to � 0
V (�) for the Example of 3C 138

5.2.1. Stokes V: the Data

We illustrate these concepts by showing and discussing the instrumental contributions to the � 0
V (�) spectra for 3C 138. We

choose 3C 138 because it is one of the few sources to exhibit a clearly detectable signal in � 0
V (�) and because its PA coverage is not

very good, so it should represent a less-than-optimum case.
Figure 2 illustrates three derived spectra for � 0

V (�). The first (top) panel is the classical opacity spectrum e��0(�). The second
panel is � 0

V ;0(�), which is derived not fitting for squint and squash, i.e., least-squares fitting equation (10d) with �Vn; j ¼ 0; this is
equivalent to the standard ON-OFF spectrum. The third panel is � 0

V ; 2(�), which is derived including both squintlike and squashlike
terms in equations (13a)–(13b). We do not show � 0

V;1(�) because it is indiscernibly different from � 0
V; 2(�). Even � 0

V;0(�) and � 0
V; 2(�)

in the second and third panels are almost identical; the fourth panel shows the difference on a 10 times expanded scale. The
similarity of � 0

V ;0(�) and � 0
V ; 2(�) is a clear indication that neither squintlike nor squashlike effects contribute significantly to the

Stokes V opacity profile for 3C 138.

5.2.2. Stokes V: Evaluation of Matrix Products for the Example of 3C 138

We can evaluate the approximate instrumental contribution of the V (�) emission terms to � 0
V ;2(�). These instrumental con-

tributions �� 0
V (�; 2) are given by equation (16), viz.,

�� 0
V ; 2

h i
¼ 0 þ6:8E� 5 K�1 �5:4E� 5 K�1 �7:2E� 5 K�1 �6:3E� 5 K�1 þ1:1E� 5 K�1

� �

;

� 0
V ; true

Vexp; true

Vsqnt;cos; true

Vsqnt;sin; true

Vsqsh;cos; true

Vsqsh;sin; true

2
666666664

3
777777775
: ð17Þ

From the lower two panels of Figures 6 and 7, we crudely estimate

� 0
V ; true

Vexp; true

Vsqnt;cos; true

Vsqnt;sin; true

Vsqsh;cos; true

Vsqsh;sin; true

2
666666664

3
777777775
�

: : :

: : :

0:7 K

0:1 K

0:2 K

0:2 K

2
666666664

3
777777775
: ð18Þ

These numerical estimates are zero-to-peak, not peak-to-peak.
We have not specified the contribution from Vexp; true because we cannot measure it accurately (see x 8). However, we can

estimate it. The Zeeman splitting in the emission line is likely to be comparable to that in the absorption line. That is, loosely
speaking we expect Vexp(�)=Texp(�)�� 0

V ; 2(�)=�0(�). Roughly, if �0(�)P1, then Texp(�) � Ts�0(�), where Ts is the spin temperature.
This gives

Vexp(�)�Ts�
0
V ;2(�): ð19Þ
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We obtain the contribution of Vexp(�) to �� 0
V ;2(�) by multiplying the above equation (19) by the corresponding matrix element (the

second element in eq. [17]). This yields a contribution

�� 0
V ; 2(�)

� 0
V ; 2(�)

� 6:8 ; 10�5TsP 6:8 ; 10�3; ð20Þ

where we have assumed Ts ¼ 100 K for this estimate, which is generously high given the results of Paper II. Therefore, the
fractional contribution �� 0

V ;2(�)=�
0
V ;2(�) is negligible for any source flux and we can neglect the contribution of Vexp(�).

Fig. 2.—I and Vopacity spectra for 3C 138. The first (top) panel is e��0(�). The second panel is � 0
V ;0(�), derived by ignoring squint and squash; the third is � 0

V ;2(�),
derived including both squint and squash; and the fourth is the difference � 0

V ;0(�)� � 0
V ;2(�). The spectra in the bottom three panels are boxcar smoothed by nine

channels to reduce the noise. As shown by the sample error bar, the scale on the bottom panel is expanded by a factor of 10.
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To get a rough estimate of the maximum total instrumental contribution from squintlike and squashlike effects, we add the
absolute values of the four individual contributions in equation (18). We obtain �� 0

V ; 2P 6 ; 10�5. This is comparable to the last
panel in Figure 2; both are about 20 times smaller than the detected Zeeman splitting in 3C 138. This is comfortably small. These
instrumental contributions scale inversely with source flux density S. For all sources our plots (e.g., Fig. 9) exhibit equation (16)’s
matrix product for �� 0

V ; 2(�). The profile �� 0
V ; 2(�) represents the approximate channel-by-channel instrumental contribution to the

Stokes V opacity profile resulting from all squintlike and squashlike contributions. In no case is this contribution significant
compared to � 0

V ; 2(�). This is fortunate, because it means that even if �� 0
V ; 2(�) is not well determined, subtracting its contribution

incurs little loss of accuracy in the final result � 0
V ; 2(�).

6. EMPIRICAL EVALUATION OF SQUINTLIKE AND SQUASHLIKE
CONTRIBUTIONS TO STOKES (Q, U ) OPACITY SPECTRA

In their discussion of polarized sidelobes, Heiles et al. (2001a) provide numerical coefficients for true squint and squash of
Stokes (Q, U ). These coefficients are about 10 times larger than for Stokes V. We believe that squint and squash are representative
samples of all polarized beam effects, so that this indicates that all sidelobes are more serious in linear than circular polarization.
Specifically, we assume that this factor of 10 applies not just to true squint and squash, but also to squintlike, squashlike, and all
other types of sidelobe contribution.

The polarized spectra � 0
Q;1(�) and � 0

U ;1(�) should be zero unless there is opacity structure in the H i that varies across the source
together with continuum polarization that also varies across the source. If we assume that there is no such structure, then any
nonzero behavior in � 0

Q;1(�) and � 0
U ;1(�) must result from the instrumental contribution of polarized sidelobes. Dividing these by 10

provides an estimate of the instrumental contribution to Stokes � 0
V ;2(�).

6.1. Stokes (Q, U): General Discussion

Stokes Q and U are more complicated to treat than V because the sky values are rotated as in equation (11a). Moreover, we
cannot fit for squashlike behavior because its PA-dependence is identical to that of real linear polarization. After performing the
correction for the continuum offsets described in x 3.3, we are left with

½�Qn(�)�
�Un(�)

� �
¼

½Qsqnt;cos(�)� cos PAn þ ½Qsqnt;sin(�)� sin PAn

½Usqnt;cos(�)� cos PAn þ ½Usqnt;sin(�)� sin PAn

� �
; ð21Þ

where, as with V in equations (13a)–(13b), we have dropped the j subscript because we assume spatial derivatives are zero.
We could derive matrix elements for Stokes (Q, U ) as we did for V in equations (14) and (15) (we cannot derive those for

squashlike behavior). However, we will not do this. The matrix elements depend on the PA coverage and Stokes I; the only
difference between linear and circular polarization is the necessity to include the additional PA dependencies in equations (11a) and
(21), and the matrix elements for (Q, U ) would be comparable in magnitude to those for V but different in detail. Owing to the
illustrative nature of our discussion, it is not worth taking up this space.

6.2. Examples of Observed Linear Polarization ½� 0
Q(�); �

0
U (�)�

6.2.1. The Example of 3C 138

Figure 3 illustrates the derived spectra for � 0
Q(�) and � 0

U (�). The first (top) panel shows the classical opacity spectrum e��0(�). The
second (middle) panel shows � 0

Q;1(�) and � 0
U ;1(�), which are derived including the squint, i.e., least-squares fitting equation (12)

with (�Qn; j, �Un; j) given by equation (21).
The two spectra in the middle panel show features with peak excursion �0.015. However, their shapes mimic to some degree the

shape of the Stokes I opacity profile �0(�) in the top panel. This similarity in shape is probably the result of a small error in the
Müller matrix coefficients, causing Stokes I to leak into Q and U at the level of a few tenths of a percent. This is the gain error
discussed in item 1 of x 4.

The bottom panel of Figure 3 shows gain-corrected spectra of � 0
Q(�) and � 0

U (�). We fitted the two middle-panel spectra to �0(�)
on a channel-by-channel basis; the dashed lines in the middle panel are the fits. The bottom panel shows the residuals [�� 0

Q;1(�),
�� 0

U ;1(�)], i.e., the data minus the fitted points. These residual profiles are the results with the gain error removed, and should be
zero. They are, in fact, zero except for bumps at the �0.003 level.

Under our assumption of zero true polarization, these �0.003 bumps must be the instrumental contribution from polarized
sidelobes. Moreover, this instrumental contribution must arise from non-squintlike contributions because squintlike behavior
has been removed from � 0

Q;1(�) and �� 0
U ;1(�). There are four possible production mechanisms for these bumps. The first is

that there really is true linear polarization, i.e., that the true values of � 0
Q; true(�) and/or �

0
U ; true(�) are not equal to zero. We will

first dispose of this possibility by considering a different source, 3C 454.3.

6.2.2. The Example of 3C 454.3

3C 454.3 is a particularly useful source for understanding linearly polarized sidelobes because it is a VLBI calibrator and has a
very small angular size (�14 milliarcsec; Fomalont et al. 2000; this is about 1000 times smaller than 3C 138). Despite the existence
of tiny scale atomic structure (reviewed by Heiles 1997), we expect � 0

Q(�) and � 0
U (�) to be very small. We assume that any

departure from zero is an instrumental contribution from polarized sidelobes.
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Fig. 3.—I and (Q, U ) spectra for 3C 138. The first (top) panel is e��0(�). The second panel shows � 0
Q;1(�) and � 0

U ;1(�), derived including squint and ignoring
squash. The dashed lines are the fits of the e��0(�) spectra to the � 0(�) spectra. The bottom panel shows the ‘‘gain-corrected’’ versions of � 0

Q;1(�) and � 0
U ;1(�), equal to

the difference between the solid and dashed lines in the second panel. Spectra in the bottom two panels have displaced zeros and are boxcar smoothed by nine
channels for clarity.
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Fig. 4.—3C 454.3 analog of Fig. 3. The first (top) panel is e��0(�). The second panel shows � 0
Q;1(�) and � 0

U ;1(�), derived including squint and ignoring squash. The
dashed lines are the fits of the e��0(�) spectra to the � 0(�) spectra. The bottom panel shows the ‘‘gain-corrected’’ versions of � 0

Q;1(�) and � 0
U ;1(�), equal to the

difference between the solid and dashed lines in the second panel. Spectra in the bottom two panels have displaced zeros and are boxcar smoothed by nine channels
for clarity.
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Here we will need the squint matrix for 3C 454.3, the equivalent of equation (15), which is

� 0
V ; 1

Vexp; 1

Vsqnt ;cos;1

Vsqnt;sin;1

2
6664

3
7775¼

1:01 �1:9E� 6 K�1 �1:7E� 5 K�1 �6:2E� 6 K�1 þ5:5E� 5 K�1 þ3:4E� 5 K�1

1:3 K 1:01 �0:01 0 �1:42 þ0:14

�5:4 K þ0:04 0:97 þ0:01 �2:12 þ0:22

þ1:1 K 0 0 1:00 þ0:02 �0:67

2
6664

3
7775

;

� 0
V ;true

Vexp;1

Vsqnt;cos;true

Vsqnt ;sin;true

Vsqsh;cos;true

Vsqsh;sin;true

2
666666664

3
777777775
: ð22Þ

Note, as anticipated in the discussion of equation (14), that the matrix elements on the first row tend to be inversely proportional to
the source flux: 3C 454.3 is about 2.4 times more intense than 3C 138. Also, of course, the above 4 ; 6 matrix elements for V are
comparable to those for Q and U.

Figure 4 is the 3C 454.3 equivalent of 3C 138 (Fig. 3), in which the middle and bottom panels show the uncorrected [� 0
1(�)]

and gain-corrected [�� 0
1(�)] spectra, respectively. The spectra in the bottom panel should be zero. They are, in fact, zero except for

bumps at the 5 ; 10�4 level in both �� 0
Q;1(�) and�� 0

U ;1(�) near VLSR ¼ �12 and 0 km s�1. These bumps must be the instrumental
contribution from polarized sidelobes.

The polarized sidelobes produce this contribution according to the matrix elements of equation (22), which for the squintlike
terms are about 1 ; 10�5 K�1. A bump of 5 ; 10�4 in �� 0

U ;1(�) would need a combination of the cosine and sine components of
either Qsqnt or Usqnt to be � 5 ; 10�4ð Þ= 1 ; 10�5 K�1

� �
¼ 50 K. The actual values, not plotted here to save space and forestall

the wrath of the Almighty, are �0.4 K. The bumps in �� 0
1(�) cannot be from squintlike behavior.

Thus, for 3C 454.3 �� 0
Q;1(�) and �� 0

U ;1(�) are nonzero while the true values should be zero. The 3C 454.3 bumps are about 3
times smaller than the 3C 138 ones, while 3C 454.3 has flux 2.4 times larger; thus, the ratios of the bump to the source flux are
comparable. This is roughly what is expected if the bumps are caused by Vsqnt and Vsqsh, because the first-row matrix elements are
roughly in the ratio of the source fluxes. We conclude that for both sources the production mechanism involves the polarized beam
interacting with angular derivatives of H i emission. Moreover, there is no squintlike behavior in this interaction, because it has
been fitted for and thereby automatically subtracted out.

6.3. Possible Production Mechanisms for Fake Linear Polarization

The unreal Stokes [��Q;1(�), ��U ;1(�)] bumps we see in 3C 454.3 (and, probably, the bumps we see in 3C 138) cannot be from
squintlike contributions, because these have been removed in the least-squares fit. There are three possible production mechanisms
for these unreal bumps:

1. One is the semirandom components of the squintlike contributions (Qsqnt, Usqnt) (see item 2, x 4). From Heiles et al. (2001a),
these are smaller than the uniform components of (Qsqnt , Usqnt). For 3C 454.3, we estimated the squint contribution to be small
compared to the bumps. That the semirandom component of squint might be larger than the mean squint is not reasonable.

2. Another is the squashlike components. The larger of the two squashlike matrix elements in each of equations (15) and (22)
are �5 ; 10�5 K�1. The unreal �0.003 bumps in��1(�) for 3C 138 and the unreal 5 ; 10�4 bumps for 3C 454.3 would need bumps
in Qsqsh; cos; true(�) of �0:003=(5 ; 10�5 K�1) ¼ 60 K and �(5 ; 10�4)=(5 ; 10�5 K�1) ¼ 10 K, respectively. These are very much
larger than the squintlike contributions—25 times larger for the case 3C 454.3. The possibility that squashlike contributions are this
much larger than squint ones is unreasonable.

3. Finally, we have the far-out sidelobes, which are unmeasurable and unpredictable.

By eliminating the other possibilities, we conclude that for 3C 138 the observed fake linear polarization results from the polarized
far-out sidelobes. This is the same conclusion we will reach in x 8.3 when discussing the empirical squintlike contribution to Vexp; 0(�).

7. AN ALTERNATIVE RECIPE FOR DETERMINING THE LEVEL OF INSTRUMENTAL EFFECTS IN �V ;2(�)

Our discussion in x 6 shows two things:

1. At Arecibo, polarized sidelobes outside the main beam and first sidelobe, together with angular structure in the sky, contribute
importantly to the contribution to instrumental polarization;

2. The eAect of polarized sidelobes is expected to be �10 times worse in linear than in circular polarization, i.e., in Stokes (Q, U )
than in Stokes V.

This leads to use the following alternative recipe for determining the level of instrumental effects in �V ;2(�).
First, least-squares fit the Stokes V spectra for squintlike and squashlike behavior to derive � 0

V ;2(�). This eliminates not only the
contribution from squint and squash proper (which, as defined in this paper, come from the main beam and first sidelobe), but also
similar PA behavior arising from the far-out sidelobes. Similarly, we fit for squintlike behavior in Stokes (Q, U ) to derive � 0

Q;1(�),
� 0
U ;1(�); we also gain-correct them to derive �� 0

Q;1(�), �� 0
U ;1(�). For all three Stokes parameters, the least-squares fit leaves us with

the PA-independent portions, which are the ones of interest.
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Next, we expect the linear polarization to be zero, so we assume that any departures of �� 0
Q;1(�), �� 0

U ;1(�) from zero are
instrumental, the result of non-squintlike behavior of the far-out sidelobes. This is an upper limit because there might, in fact, be true
linear polarization. At Arecibo beam effects in linear polarization are about 10 times those in circular polarization, so calculate the
linear polarization � 0

QU ;1(�) ¼ ½�� 0
Q;1(�)

2 þ�� 0
U ;1(�)

2�1=2 and divide it by 10 to estimate the remaining non-squintlike instrumental
effects that remain in the � 0

V ; 2(�) spectrum.
In our plots of � 0

V ; 2 we include this alternative estimate of the uncertainty, along with �� 0
V ; 2(�) as discussed in x 5.2.2.

8. SQUINT AND SQUASH CONTRIBUTIONS TO STOKES V EMISSION SPECTRA

The above sections concentrate on the uncertainties in the Stokes V opacity spectrum � 0
V (�) and its cousins � 0

Q(�) and � 0
U (�). In

principle, we can also derive the circular polarization of the expected emission profile Vexp(�). Here we address the efficacy of
doing this, i.e., we estimate squintlike and squashlike instrumental contributions to Vexp(�). We find that we cannot derive reliable
values of Vexp(�), primarily because of our incomplete sampling of PA.

8.1. Empirical Evaluation: the Example of 3C 138

As with the polarized opacity spectra, we can derive the polarized emission spectra for the three cases discussed in x 5.1, namely
ignoring squint and squash, removing squint only, and removing both squint and squash. Figure 5 exhibits these three versions
Vexp;0(�), Vexp;1(�), and Vexp;2(�) for 3C 138. There are large differences between the three versions. The spectra change shape and
become noisier as we work our way from Vexp;0(�) to Vexp;2(�). This occurs because of the covariance produced by incomplete PA
coverage, as discussed in x 5. We cannot exclude the possibility that most of the contribution to Vexp;0(�) is from the squintlike and
squashlike behaviors, i.e., the components of Vsqnt;true(�) and Vsqsh;true(�).

Figures 6 and 7 show the various measured (not the true) squintlike and squashlike contributions. These contribute to the various
versions of Vexp(�) according to the relevant matrix elements in the second rows of equations (14), (15), and (16). As an example, for
Vexp;0(�), which is derived including neither the squintlike nor squashlike PA dependence, the (Vsqnt;cos;1;Vsqnt;sin;1) components
contribute by their values multiplied by the corresponding matrix elements in equation (14) (�0.29 and �0.21, respectively). These
amount to a fake contributions to Vexp;0(�) of �0.04 K. This is comparable to the difference ½Vexp;0(�)� Vexp;1(�)�.

For Vexp;1(�), derived including only the squintlike PA dependence, the matrix elements drop to less than 0.005 (denoted by ‘‘0’’
in eq. [15]), making the squintlike contribution negligible. One is tempted to think that the remaining 0.1 K level bumps in
Vexp;1(�), shown in Figure 5, are real. However, the squashlike matrix element for Vsqsh;cos;true is huge, �1.33, so it is conceivable
that the 0.1 K bumps are produced by squashlike behavior; alternatively, they might be produced by far-out sidelobes whose
contribution is neither squintlike nor squashlike.

To elucidate these matters we compare the true squint/squash contributions, which come from only the main beam and first
sidelobe, with the squintlike and squashlike contributions, which come from all parts of the telescope beam. First we evaluate the
true contributions.

8.2. Prediction of True Squint and Squash Contributions to Stokes V Spectra Using Angular Derivatives

Here we discuss specifically only true squint and squash—namely, those portions of squintlike and squashlike behaviors that are
produced by the primary beam and the first sidelobe. Heiles et al. (2001a) have evaluated the contribution to the Stokes V emission
spectrum from true beam squint and true beam squash interacting with the first and second spatial derivatives of the spatially
extended H i distribution. We use their formulation to predict this instrumental (‘‘fake’’) contribution, which we denote with the
subscript ‘‘fake.’’ In their x 6 Heiles et al. (2001a) consult their Figure 14 to find that

jVfakejP 0:015
dI

d�

����
����þ 0:025

d2I

d�2

����
����; ð23Þ

where I and V are antenna temperatures in K; � is the angle in the sky, units are arcmin. The first term is squint, the second squash.
The P sign appears because (1) the equation is approximate; (2) it is an upper limit because it assumes that the absolute values of
the contributions from the first and second spatial derivatives add arithmetically, while in fact they can cancel; and (3) the
contributions of each term are periodic in PA or 2PA, so when observations are averaged over hour angle the instrumental
contributions partially cancel.

Equation (23) provides the fake V emission spectrum for a particular position. We could pursue this for the opacity spectra, also.
However, they are derived by ON–OFF observations—in fact, 16 of them—and the resulting instrumental contributions contain
terms in (d3I=d�3)��2 for squint and (d4I=d�4)��3 for squash; here �� is the distance between ON and OFF measurements. We
cannot evaluate these terms observationally, so it is not worth discussing opacity spectra.

8.3. Comparison of Empirical and Predicted V Opacity Spectra for the Example of 3C 138

We denote this predicted spectrum by Vexp;fake(�) and show it in Figure 8. There are two distinct parts, the squint (dashed line)
and squash (dash-dotted line), from the first and second terms in equation (23), respectively; both are important. Vexp;fake(�) has a
peak level �0.08 K. For comparison, the top panels of Figures 7 and 6 show the empirically determined Vsqnt;sin;1(�) and
Vsqnt;cos;1(�). They have peak levels �0.15 K. This is about 4 times larger than the peak predicted squint. The ratio for some other
sources is larger; for example, for 3C 207 the ratio is about 8. Likewise, the empirically determined squashlike contributions in
Figures 6 and 7 (bottom panels) have peak values �0.2 K, about 4–5 times larger than the peak predicted squash in Figure 8.

We conclude that the empirically determined squintlike and squashlike contributions are considerably larger than the true squint
and squash expected from the main beam and first sidelobe. The empirically determined ones include not only the true squint and
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squash, but also the contribution from far-out sidelobes. We conclude that the far-out sidelobes dominate the contribution to the
observed squint and squash.

Even weak far-out sidelobes can produce these effects. They span large angles in the sky. Over these large angles, the H i angular
structure can change considerably; this exaggerates the contribution of these sidelobes. As a specific example, Heiles et al. (2001a)
find that the first sidelobe’s contribution to Vsqnt;1 is almost twice that of the main beam, while its contribution to I is only �1

3
that

of the main beam.
We eliminate the squintlike contribution to Vexp(�) by including it in the least-squares fit. However, we cannot eliminate the

squashlike component by fitting because of the noise, which results from the covariance. To obtain accurate results, these
instrumental contributions must be removed with high reliability. This might be possible by fitting for the squash, as in Vexp;1(�),
but the excess noise produced by the covariance is prohibitive. We conclude that we cannot derive Vexp(�) for 3C 138.

Fig. 5.—3C 138 expected emission profile analog of the opacity spectra in Fig. 2. The top panel is the expected Stokes I emission profile Iexp(�) (twice the
conventionally defined brightness temperature). The second panel is Vexp,0(�), derived by ignoring squint and squash; the third is Vexp,1(�), derived by including
squint but not squash in the fit; and the fourth is Vexp,2(�), derived by including both squint and squash. The bottom three are gain-corrected and boxcar-smoothed by
nine channels for clarity. As shown by the sample error bar, the vertical scale on the bottom panel is 2 times larger than on the second and third panels.
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Fig. 6.—Cosine components Vsqnt,cos(�) and Vsqsh,cos(�) for 3C 138. The first (top) panel exhibits Vsqnt,cos,1, derived by solving eq. (10d) including only the
squintlike terms in eqs. (13a)–(13b). The second and third exhibit Vsqnt,cos,2 and Vsqsh,cos,2 derived by including both squintlike and squashlike terms. As shown by the
sample error bar, the vertical scales of the two lower panels are 5 times that of the top panel. All spectra are boxcar smoothed by nine channels to reduce the noise.



Fig. 7.—Sine components Vsqnt,sin(�) and Vsqsh,sin(�) for 3C 138. The first (top) panel exhibits Vsqnt,sin,1, derived by solving eq. (10d) including only the squintlike
terms in eqs. (13a)–(13b). The second and third exhibit Vsqnt,sin,2 and Vsqsh,sin,2 derived by including both squintlike and squashlike terms. All spectra are boxcar
smoothed by nine channels to reduce the noise.



Unfortunately, none of our sources exhibits a believable Vexp;1(�) profile. In some cases, such as 3C 123, Vexp;0(�) suggests a
Zeeman-splitting signal but we have insufficient PA coverage to determine even the squintlike component. We were not always
able to obtain good PA coverage because of practical considerations regarding the telescope schedule and our source list. In other
cases, such as 3C 138, the squintlike and/or squashlike component is disturbingly large. Telescopes with fewer far-out sidelobes
than Arecibo are desirable, and perhaps even necessary, to determine reliable Zeeman splitting of emission profiles.

8.4. Regarding Magnetic Fields

A magnetic field of Bk �G produces Zeeman splitting ��Z ¼ 2:8Bk Hz, which produces VZ(�) � (2:8Bk=��FWHM)I (�), where
��FWHM is the half-power line width. For a line of width 2 km s�1, we have the uncertainty in magnetic field
�Bk � 3000½V (�)=I(�)�. For 3C 138 we have the peak I (�) �100 K and the uncertainty in Vexp(�) � 0:2 K, so the uncertainty in
fractional circular polarization is �0.002. This gives �Bk � 6 �G, which is unacceptably large. We conclude that use of our data
for determining Vexp;1(�), i.e., the circular polarization of emission profiles, at the levels required for determining magnetic fields is
unwarranted unless the actual magnetic fields are very high or instrumental effects happen to be unusually small.

9. RESULTS

9.1. Graphical Results

Our Paper I /Paper II survey covered 79 continuum sources. Of these, 61 had detectable CNM. Of these, we had enough
integration time for Zeeman-splitting measurements on 39. Here we add two additional sources, Tau A (observed at Arecibo) and
Cas A (observed years ago at HCRO). Therefore, we have a total of 41 sources.

Figure 9a presents the data for 3C 138 in three panels. The top panel exhibits �0(�) as the large black dotted line,
together with the fitted Gaussians from Paper I as the light dotted lines. This panel is annotated with information about the
Gaussians. The middle panel shows � 0

2(�) as the solid line, and the least-squares fit to Bk as the dashed line; the fitted
field for each Gaussian is different, and the values are shown in the annotations of the top panel. The bottom panel
provides information on possible instrumental contributions: the top solid line is the expected instrumental contribution
�� 0

2(�) from equation (17), and the bottom solid line shows one-tenth the linearly polarized profile � 0
QU;1(�)=10 as described

in x 7. We provide plots equivalent to Figure 9 for all sources in the electronic edition of The Astrophysical Journal
Supplement.

9.2. Tabular Results for Gaussian Components

Typically, each source has several CNM components, which we represent by Gaussians as described in Paper I. Our 41 sources
have a total of 151 components. However, some of these have such large errors in the derived Bk that they are not worth
considering. Table 1 lists all Gaussian components for which �B < 100 �G; these number 136.

If we define a ‘‘detection’’ as jBkj > 2:5�Bk, where �Bk is the 1 � uncertainty, and in addition if we require �Bk < 10 �G, then
we have 69 components and 22 detections; including results with �Bk < 10 �G brings the 22 up to 26, but we discount these (see
below). If we were to restrict our discussion to the 22 sure detections, there is little we could say except to comment on individual
sources. However, if we include the ensemble of results and discuss them statistically, we can do much more.

Our results on Bk are unique among H i Zeeman-splitting work in that the errors �Bk should be reasonably free of instrumental
contributions, as shown by our discussion in the above sections. This low instrumental contribution occurs because H i absorption
lines are the results of ON-OFF measurements, which switches out most of the instrumental contribution. In contrast, other large
Zeeman-splitting surveys (e.g., Heiles 1989) examine the H i line in emission; these are ON measurements, and the instrumental
contribution is a nontrivial portion of the measured results (Heiles 1996). With our current absorption line measurements, there is no

Fig. 8.—Instrumental (‘‘fake’’) on-source emission V profile |Vfake,on(�)|, from eq. (23). This is the contribution from true squint and squash, i.e., from the primary
beam and first sidelobe only.
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Fig. 9.—Derived spectra for 3C 138; plots for all sources are available in the electronic edition of The Astrophysical Journal. The top panel exhibits �0(�) as the
large black dotted line, together with the fitted Gaussians from Paper I as the light dotted lines. This panel is annotated with information about the Gaussians. The
middle panel shows � 0

2(�) as the solid line and the least-squares fit as the dashed line. The bottom panel provides information on possible instrumental contributions
as described in the text.
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TABLE 1

Table of Gaussian Fit Parameters Having �Bk < 100 �G

TB � VLSR �V Ts Tkmax N (H i)20 Bk (l/b/Source)

34.34......... 1.666 � 0.007 7.6 � 0.0 4.48 � 0.01 42.34 � 9.96 438 6.15 �1.6 � 1.9 190.4/�27.4/3C 120

19.32......... 0.736 � 0.010 6.2 � 0.0 1.33 � 0.02 37.08 � 6.86 38 0.71 5.2 � 3.8 190.4/�27.4/3C 120

20.65......... 0.634 � 0.008 10.2 � 0.0 1.91 � 0.02 43.96 � 3.95 79 1.04 3.6 � 2.8 190.4/�27.4/3C 120

80.96......... 0.596 � 0.026 4.7 � 0.0 2.32 � 0.08 180.36 � 115.21 117 4.86 4.8 � 4.2 170.6/�11.7/3C 123

13.50......... 1.606 � 0.026 4.4 � 0.0 4.79 � 0.02 16.88 � 7.44 501 2.53 �2.6 � 1.0 170.6/�11.7/3C 123

2.51........... 0.063 � 0.002 �19.6 � 0.0 3.14 � 0.11 40.93 � 6.20 215 0.16 1.2 � 8.6 170.6/�11.7/3C 123

0.18........... 0.008 � 0.001 �57.8 � 0.5 5.62 � 1.09 22.15 � 40.62 691 0.02 �11.4 � 86.9 170.6/�11.7/3C 123

0.57........... 0.032 � 0.002 �72.9 � 0.1 4.28 � 0.24 17.79 � 10.26 400 0.05 �4.7 � 19.3 170.6/�11.7/3C 123

0.00........... 0.007 � 0.002 20.0 � 0.5 3.88 � 1.09 0.00 � 0.00 328 0.00 55.1 � 86.1 170.6/�11.7/3C 123

39.30......... 2.152 � 0.034 5.3 � 0.0 4.24 � 0.04 44.47 � 8.06 392 7.90 0.7 � 8.4 171.4/�7.8/3C 131

21.36......... 0.321 � 0.006 �2.3 � 0.1 6.95 � 0.21 77.79 � 5.43 1057 3.38 2.8 � 36.2 171.4/�7.8/3C 131

19.68......... 0.260 � 0.006 13.0 � 0.1 5.68 � 0.23 85.86 � 9.64 705 2.47 9.7 � 5.5 178.9/�12.5/3C 132

43.75......... 1.542 � 0.028 8.1 � 0.0 2.42 � 0.03 55.66 � 14.67 128 4.05 4.2 � 1.0 178.9/�12.5/3C 132

9.04........... 0.351 � 0.007 1.8 � 0.1 5.43 � 0.12 30.52 � 11.08 643 1.13 �4.0 � 3.8 178.9/�12.5/3C 132

30.18......... 1.532 � 0.021 8.0 � 0.0 2.51 � 0.02 38.50 � 13.68 138 2.89 5.8 � 1.1 177.7/�9.9/3C 133

25.98......... 0.891 � 0.021 3.7 � 0.0 2.77 � 0.06 44.04 � 17.06 167 2.12 �0.3 � 1.7 177.7/�9.9/3C 133

15.35......... 0.262 � 0.006 �0.2 � 0.2 6.17 � 0.31 66.60 � 11.51 831 2.10 �9.5 � 6.3 177.7/�9.9/3C 133

1.16........... 0.064 � 0.009 �27.6 � 0.2 2.84 � 0.46 18.79 � 6.96 176 0.07 15.1 � 14.2 177.7/�9.9/3C 133

12.83......... 0.060 � 0.008 �29.5 � 0.4 8.45 � 0.63 219.27 � 5.45 1559 2.17 �41.8 � 25.0 177.7/�9.9/3C 133

25.99......... 1.046 � 0.008 6.4 � 0.0 2.30 � 0.02 40.07 � 12.30 115 1.87 5.6 � 1.0 187.4/�11.3/3C 138

15.70......... 0.406 � 0.005 9.1 � 0.0 2.81 � 0.06 47.02 � 11.54 172 1.05 �5.6 � 2.2 187.4/�11.3/3C 138

8.48........... 0.176 � 0.014 1.6 � 0.1 1.84 � 0.09 52.62 � 11.03 73 0.33 7.3 � 3.4 187.4/�11.3/3C 138

11.82......... 0.247 � 0.006 �0.5 � 0.1 2.86 � 0.12 54.03 � 9.60 178 0.74 10.6 � 3.1 187.4/�11.3/3C 138

21.94......... 0.060 � 0.004 1.8 � 0.2 14.64 � 0.48 379.12 � 23.44 4683 6.44 13.0 � 26.9 187.4/�11.3/3C 138

3.78........... 0.038 � 0.002 �21.5 � 0.1 3.45 � 0.21 101.52 � 5.08 260 0.26 39.5 � 16.4 187.4/�11.3/3C 138

44.11......... 2.362 � 0.045 7.0 � 0.0 3.13 � 0.03 48.69 � 15.55 214 7.02 �8.3 � 1.3 197.6/�14.5/3C 142.1

4.22........... 0.203 � 0.007 13.4 � 0.1 4.12 � 0.17 23.03 � 10.75 370 0.37 7.2 � 7.4 197.6/�14.5/3C 142.1

9.51........... 0.083 � 0.007 22.4 � 0.1 3.39 � 0.32 119.08 � 10.47 251 0.65 �23.3 � 14.9 197.6/�14.5/3C 142.1

0.90........... 0.101 � 0.007 �9.2 � 0.1 3.24 � 0.26 9.37 � 13.82 229 0.06 0.8 � 12.1 197.6/�14.5/3C 142.1

30.83......... 0.919 � 0.014 1.8 � 0.0 2.63 � 0.07 51.28 � 18.44 151 2.42 �9.8 � 1.7 185.6/4.0/3C 154

6.05........... 0.292 � 0.019 �2.1 � 0.0 1.32 � 0.10 23.87 � 18.23 37 0.18 �6.0 � 4.0 185.6/4.0/3C 154

24.81......... 0.709 � 0.014 �2.9 � 0.0 4.45 � 0.06 48.85 � 14.40 433 3.01 �5.1 � 2.4 185.6/4.0/3C 154

19.70......... 0.479 � 0.007 5.0 � 0.1 3.48 � 0.10 51.78 � 15.58 263 1.68 �6.3 � 2.8 185.6/4.0/3C 154

10.83......... 0.413 � 0.006 10.6 � 0.0 2.12 � 0.03 31.98 � 9.17 98 0.55 0.1 � 2.0 185.6/4.0/3C 154

11.61......... 0.068 � 0.003 �23.7 � 0.1 4.35 � 0.22 176.60 � 5.51 412 1.02 �3.9 � 14.3 185.6/4.0/3C 154

38.18......... 0.252 � 0.008 22.6 � 0.4 21.71 � 0.98 171.23 � 6.90 10301 18.26 �40.5 � 33.1 207.3/1.2/3C 167

50.50......... 0.941 � 0.024 42.2 � 0.1 8.01 � 0.23 82.85 � 12.73 1403 12.16 39.2 � 7.7 207.3/1.2/3C 167

8.60........... 0.386 � 0.032 49.3 � 0.1 2.09 � 0.19 26.87 � 5.61 95 0.42 �24.6 � 7.6 207.3/1.2/3C 167

16.71......... 0.669 � 0.011 �8.9 � 0.0 2.43 � 0.03 34.25 � 7.89 129 1.09 �1.2 � 1.5 118.6/�52.7/3C 18

8.15........... 0.183 � 0.018 �5.7 � 0.1 3.99 � 0.25 48.75 � 9.41 347 0.69 12.8 � 7.0 118.6/�52.7/3C 18

19.42......... 0.075 � 0.019 �6.7 � 0.2 8.68 � 0.70 267.80 � 5.28 1648 3.41 26.5 � 21.6 118.6/�52.7/3C 18

5.39........... 0.068 � 0.002 8.0 � 0.1 4.30 � 0.12 82.14 � 3.76 403 0.47 �28.1 � 12.0 197.9/26.4/3C 192

5.03........... 0.298 � 0.004 15.4 � 0.0 2.43 � 0.03 19.53 � 2.66 129 0.28 �1.9 � 2.2 213.0/30.1/3C 207

5.46........... 0.250 � 0.002 4.2 � 0.0 5.25 � 0.05 24.65 � 4.74 602 0.63 �3.2 � 3.7 213.0/30.1/3C 207

5.78........... 0.313 � 0.003 4.0 � 0.0 1.32 � 0.01 21.53 � 1.30 37 0.17 �1.2 � 4.9 219.9/44.0/3C 225a

9.17........... 0.745 � 0.002 3.6 � 0.0 1.25 � 0.00 17.44 � 1.80 34 0.32 �1.3 � 1.1 220.0/44.0/3C 225b

1.21........... 0.027 � 0.001 �28.0 � 0.1 4.78 � 0.13 45.40 � 3.28 499 0.11 3.6 � 43.4 220.0/44.0/3C 225b

2.79........... 0.047 � 0.001 �37.9 � 0.1 2.52 � 0.11 61.11 � 1.97 138 0.14 �15.7 � 20.2 220.0/44.0/3C 225b

0.53........... 0.033 � 0.001 �40.6 � 0.1 2.07 � 0.12 16.64 � 3.05 93 0.02 1.8 � 26.1 220.0/44.0/3C 225b

4.47........... 0.398 � 0.001 1.9 � 0.0 1.19 � 0.00 13.61 � 0.26 31 0.13 �0.7 � 1.1 232.1/46.6/3C 237

1.39........... 0.005 � 0.000 �3.0 � 0.1 2.48 � 0.16 255.60 � 10.79 134 0.07 45.6 � 92.9 232.1/46.6/3C 237

0.81........... 0.018 � 0.000 �6.3 � 0.0 2.37 � 0.04 44.43 � 3.19 122 0.04 �29.6 � 24.6 289.9/64.4/3C 273

3.80........... 0.102 � 0.001 �1.6 � 0.0 2.94 � 0.04 39.15 � 2.41 189 0.23 44.9 � 13.1 269.9/83.2/3C 274.1

17.93......... 0.620 � 0.003 �3.7 � 0.0 1.75 � 0.01 38.81 � 3.37 66 0.82 �2.7 � 1.3 38.5/60.2/3C 310

2.86........... 0.061 � 0.001 0.6 � 0.1 5.11 � 0.13 48.36 � 4.76 571 0.29 9.2 � 17.8 38.5/60.2/3C 310

24.03......... 0.784 � 0.011 �4.2 � 0.0 2.15 � 0.02 44.23 � 2.20 100 1.45 �0.1 � 1.1 39.3/58.5/3C 315

8.30........... 0.146 � 0.004 1.6 � 0.1 4.41 � 0.15 61.00 � 15.11 425 0.77 3.9 � 6.3 39.3/58.5/3C 315

13.05......... 0.482 � 0.013 �6.0 � 0.0 1.77 � 0.03 34.12 � 4.47 68 0.57 �0.2 � 4.1 30.0/54.8/3C 318

15.55......... 0.300 � 0.011 �5.0 � 0.0 3.36 � 0.04 60.07 � 5.81 246 1.18 �4.6 � 7.6 30.0/54.8/3C 318

17.01......... 0.993 � 0.010 0.9 � 0.0 2.11 � 0.02 27.01 � 7.96 97 1.10 3.0 � 1.7 37.6/42.3/3C 333

9.35........... 0.025 � 0.000 �4.3 � 0.0 8.91 � 0.10 379.10 � 3.26 1733 1.64 �30.9 � 42.9 129.4/�49.3/3C 33

2.66........... 0.259 � 0.003 �2.2 � 0.0 1.65 � 0.03 11.65 � 4.80 59 0.10 1.4 � 1.5 23.0/29.2/3C 348

14.76......... 0.604 � 0.004 0.5 � 0.0 2.12 � 0.01 32.54 � 5.82 98 0.81 0.0 � 0.9 23.0/29.2/3C 348

8.53........... 0.078 � 0.002 7.2 � 0.0 3.73 � 0.09 113.21 � 1.57 304 0.64 0.5 � 6.4 23.0/29.2/3C 348

25.87......... 1.209 � 0.007 0.0 � 0.0 2.80 � 0.01 36.89 � 10.12 170 2.43 4.2 � 2.0 21.1/19.9/3C 353
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TABLE 1—Continued

TB � VLSR �V Ts Tkmax N (H i)20 Bk (l/b/Source)

15.37......... 0.859 � 0.006 2.4 � 0.0 1.69 � 0.01 26.66 � 13.08 62 0.76 5.1 � 2.0 21.1/19.9/3C 353

28.62......... 0.195 � 0.008 1.4 � 0.0 5.84 � 0.07 161.35 � 4.53 746 3.59 0.6 � 11.8 21.1/19.9/3C 353

1.57........... 0.040 � 0.001 11.9 � 0.0 3.01 � 0.07 39.89 � 5.32 198 0.09 �15.7 � 21.5 21.1/19.9/3C 353

11.93......... 0.451 � 0.002 3.9 � 0.0 3.03 � 0.02 32.85 � 7.01 201 0.88 3.3 � 1.2 63.3/�5.9/3C 409

11.86......... 0.331 � 0.003 7.7 � 0.0 2.91 � 0.04 42.08 � 10.70 184 0.79 3.0 � 1.7 63.3/�5.9/3C 409

20.64......... 0.753 � 0.009 15.7 � 0.0 1.69 � 0.02 38.99 � 13.10 62 0.97 5.4 � 1.0 63.3/�5.9/3C 409

22.40......... 0.861 � 0.010 13.7 � 0.0 1.96 � 0.02 38.80 � 18.47 83 1.28 0.6 � 1.0 63.3/�5.9/3C 409

10.44......... 0.413 � 0.011 14.0 � 0.0 6.90 � 0.13 30.85 � 11.38 1040 1.71 3.2 � 2.5 63.3/�5.9/3C 409

5.17........... 0.035 � 0.001 23.3 � 0.1 4.27 � 0.20 148.28 � 13.67 399 0.44 �1.1 � 13.7 63.3/�5.9/3C 409

52.84......... 2.214 � 0.030 7.8 � 0.0 2.77 � 0.05 59.33 � 24.84 167 7.08 1.4 � 1.0 69.2/�3.8/3C 410

31.74......... 0.688 � 0.009 11.3 � 0.1 3.55 � 0.11 63.79 � 22.10 276 3.04 0.2 � 2.1 69.2/�3.8/3C 410

13.06......... 0.369 � 0.061 �0.7 � 0.2 3.51 � 0.21 42.30 � 13.68 269 1.07 4.4 � 3.0 69.2/�3.8/3C 410

26.67......... 0.654 � 0.025 2.6 � 0.2 4.33 � 0.34 55.56 � 22.19 409 3.06 5.2 � 2.3 69.2/�3.8/3C 410

0.00........... 0.118 � 0.004 17.8 � 0.1 4.81 � 0.25 0.00 � 0.00 506 0.00 18.4 � 8.3 69.2/�3.8/3C 410

8.04........... 0.103 � 0.004 25.0 � 0.1 3.54 � 0.17 82.37 � 8.82 274 0.58 7.9 � 7.6 69.2/�3.8/3C 410

8.43........... 0.042 � 0.004 �23.2 � 0.2 3.52 � 0.37 205.53 � 15.95 270 0.59 12.5 � 17.9 69.2/�3.8/3C 410

0.30........... 0.019 � 0.005 �46.3 � 0.3 2.53 � 0.68 16.11 � 29.14 139 0.02 11.2 � 32.9 69.2/�3.8/3C 410

2.66........... 0.162 � 0.008 2.1 � 0.0 1.45 � 0.06 17.85 � 10.98 45 0.08 �0.7 � 3.8 74.5/�17.7/3C 433

24.25......... 0.258 � 0.007 3.0 � 0.0 4.12 � 0.09 106.60 � 4.40 371 2.21 �0.6 � 3.3 74.5/�17.7/3C 433

6.71........... 0.076 � 0.003 6.9 � 0.0 1.97 � 0.10 92.22 � 5.03 84 0.27 6.7 � 6.6 74.5/�17.7/3C 433

4.39........... 0.053 � 0.002 16.0 � 0.0 3.11 � 0.11 85.00 � 4.10 210 0.27 14.7 � 10.8 74.5/�17.7/3C 433

5.91........... 0.093 � 0.001 3.9 � 0.0 3.12 � 0.05 66.22 � 2.48 213 0.38 �0.3 � 21.2 88.1/�35.9/3C 454.0

6.81........... 0.045 � 0.001 �1.5 � 0.1 6.39 � 0.20 156.34 � 5.71 892 0.87 �23.1 � 62.3 88.1/�35.9/3C 454.0

7.59........... 0.091 � 0.001 �2.0 � 0.0 3.69 � 0.07 86.97 � 5.18 297 0.57 6.6 � 3.6 86.0/�38.1/3C 454.3

3.50........... 0.079 � 0.003 0.7 � 0.0 1.81 � 0.06 46.32 � 4.91 71 0.13 3.4 � 2.9 86.0/�38.1/3C 454.3

0.88........... 0.022 � 0.001 3.4 � 0.2 4.20 � 0.35 40.89 � 12.03 386 0.07 5.6 � 15.5 86.0/�38.1/3C 454.3

10.73......... 0.298 � 0.001 �10.1 � 0.0 2.65 � 0.01 41.65 � 1.52 153 0.64 �2.1 � 0.9 86.0/�38.1/3C 454.3

0.42........... 0.048 � 0.001 �30.4 � 0.0 2.00 � 0.05 8.92 � 3.30 87 0.02 0.8 � 4.4 86.0/�38.1/3C 454.3

0.91........... 0.016 � 0.001 �35.4 � 0.1 3.36 � 0.18 56.79 � 7.80 246 0.06 �1.7 � 16.5 86.0/�38.1/3C 454.3

2.18........... 0.015 � 0.001 �16.8 � 0.1 5.51 � 0.27 151.25 � 9.11 664 0.24 �51.7 � 23.7 86.0/�38.1/3C 454.3

22.55......... 0.290 � 0.007 �10.8 � 0.1 5.10 � 0.13 89.70 � 4.14 569 2.58 30.3 � 12.4 157.8/�48.2/3C 64

3.71........... 0.086 � 0.007 0.2 � 0.2 4.37 � 0.38 45.23 � 5.28 417 0.33 �16.7 � 34.8 157.8/�48.2/3C 64

17.93......... 0.682 � 0.006 �10.4 � 0.0 2.32 � 0.02 36.26 � 4.06 117 1.12 5.0 � 1.5 170.3/�44.9/3C 75

3.33........... 0.095 � 0.004 �5.8 � 0.1 2.74 � 0.12 36.89 � 3.43 163 0.19 �16.2 � 8.8 170.3/�44.9/3C 75

11.02......... 0.113 � 0.003 5.3 � 0.1 5.19 � 0.13 103.57 � 6.97 589 1.18 �1.2 � 10.2 170.3/�44.9/3C 75

28.24......... 1.108 � 0.004 6.8 � 0.0 2.24 � 0.01 42.17 � 7.17 109 2.04 �4.6 � 1.0 174.9/�44.5/3C 78

4.29........... 0.082 � 0.001 10.7 � 0.1 4.26 � 0.14 54.38 � 6.31 396 0.37 19.9 � 11.7 174.9/�44.5/3C 78

6.81........... 0.153 � 0.002 4.2 � 0.0 1.92 � 0.05 47.89 � 4.61 80 0.27 2.8 � 4.5 174.9/�44.5/3C 78

6.81........... 0.116 � 0.002 �7.7 � 0.0 3.07 � 0.06 62.07 � 5.14 206 0.43 �14.3 � 6.6 174.9/�44.5/3C 78

7.09........... 0.297 � 0.017 9.5 � 0.0 1.35 � 0.09 27.59 � 20.46 39 0.21 �2.8 � 4.8 179.8/�31.0/3C 98

38.72......... 0.508 � 0.012 9.5 � 0.0 5.21 � 0.07 97.27 � 6.30 594 5.02 �2.4 � 3.8 179.8/�31.0/3C 98

5.33........... 0.041 � 0.003 23.0 � 0.2 6.82 � 0.58 134.11 � 3.95 1016 0.72 4.2 � 41.4 179.8/�31.0/3C 98

1.48........... 0.092 � 0.004 �1.0 � 0.1 4.87 � 0.22 16.82 � 5.14 519 0.15 14.7 � 15.8 179.8/�31.0/3C 98

14.24......... 0.600 � 0.039 1.4 � 0.1 2.04 � 0.08 31.55 � 2.71 90 0.75 5.2 � 3.6 39.6/17.1/4C 13.65

10.20......... 0.344 � 0.023 3.4 � 0.2 2.57 � 0.20 35.09 � 3.09 144 0.60 �8.8 � 6.5 39.6/17.1/4C 13.65

17.73......... 1.161 � 0.015 2.0 � 0.0 2.10 � 0.02 25.81 � 6.76 96 1.22 4.7 � 2.3 43.5/9.2/4C 13.67

18.90......... 1.019 � 0.010 6.2 � 0.0 4.01 � 0.04 29.56 � 8.37 351 2.36 5.8 � 3.3 43.5/9.2/4C 13.67

2.36........... 0.030 � 0.003 20.2 � 0.4 8.20 � 0.89 80.73 � 7.14 1469 0.38 77.6 � 92.0 43.5/9.2/4C 13.67

67.48......... 4.067 � 2.174 7.5 � 0.1 0.90 � 0.15 68.66 � 26.77 17 4.90 2.5 � 10.9 188.1/0.0/4C 22.12

60.36......... 7.911 � 8.309 4.4 � 0.1 0.83 � 0.19 60.38 � 27.61 14 7.68 8.7 � 11.3 188.1/0.0/4C 22.12

35.27......... 6.994 � 1.782 �2.2 � 0.0 1.26 � 0.08 35.31 � 16.92 34 6.05 7.0 � 4.5 188.1/0.0/4C 22.12

19.49......... 0.840 � 0.034 15.8 � 0.1 3.97 � 0.16 34.28 � 12.06 345 2.23 25.3 � 11.0 188.1/0.0/4C 22.12

68.21......... 1.756 � 0.045 5.1 � 0.1 11.63 � 0.21 82.46 � 27.02 2954 32.79 �55.2 � 13.5 188.1/0.0/4C 22.12

17.87......... 0.166 � 0.003 9.6 � 0.0 1.87 � 0.04 117.02 � 10.60 76 0.71 �3.1 � 4.4 186.8/�7.1/P0531+19

17.77......... 0.474 � 0.003 1.8 � 0.0 2.09 � 0.02 47.10 � 16.58 95 0.91 0.3 � 1.9 186.8/�7.1/P0531+19

39.01......... 0.229 � 0.001 5.5 � 0.0 8.74 � 0.06 190.74 � 13.06 1670 7.43 15.6 � 7.1 186.8/�7.1/P0531+19

2.81........... 0.073 � 0.001 �3.6 � 0.0 2.23 � 0.02 40.00 � 1.10 108 0.13 �29.5 � 19.8 222.5/63.1/P1055+20

16.34......... 1.285 � 0.042 33.9 � 0.0 1.70 � 0.05 22.59 � 10.30 63 0.96 �0.8 � 2.1 201.5/0.5/T0629+10

14.47......... 0.271 � 0.016 30.9 � 0.1 2.82 � 0.26 60.90 � 13.83 173 0.91 31.2 � 8.8 201.5/0.5/T0629+10

13.92......... 0.354 � 0.017 23.3 � 0.1 3.03 � 0.16 46.68 � 19.93 201 0.98 �2.8 � 7.1 201.5/0.5/T0629+10

28.44......... 1.605 � 0.035 4.9 � 0.0 4.37 � 0.06 35.60 � 14.16 416 4.86 �16.9 � 3.0 201.5/0.5/T0629+10

46.16......... 0.297 � 0.005 16.9 � 0.3 28.09 � 0.46 179.87 � 8.78 17249 29.19 45.1 � 24.0 201.5/0.5/T0629+10

3.96........... 0.152 � 0.017 �11.9 � 0.1 1.29 � 0.16 28.13 � 7.36 36 0.11 4.0 � 7.7 201.5/0.5/T0629+10

71.60......... 0.346 � 0.003 5.2 � 0.0 10.91 � 0.06 245.06 � 4.27 2602 18.00 2.1 � 3.3 184.6/�5.8/Tau A

8.37........... 1.242 � 0.007 10.7 � 0.0 2.09 � 0.01 11.77 � 1.06 95 0.59 �3.1 � 0.6 184.6/�5.8/Tau A



reason not to expect �Bk to be Gaussian distributed. This allows us to use standard statistical techniques to explore the distribution
of field strength and its correlation with other physical parameters beyond the small-number statistics of secure detections.

9.3. A Good Statistical Sample of Tabular Results

In a later paper we will perform the detailed statistical analyses on our results. In preparation for this work, here we apply
additional criteria to discard an additional selected group of Gaussian components. We discard these for two reasons. One is to
avoid cluttering plots. The other is because for some components the errors�Bk are likely to depart from the Gaussian distribution;
this can happen in profiles affected by component blending, especially when they are noisy.

We discard Zeeman-splitting detections that satisfy any one of the following criteria:

1. The uncertainty �Bk > 10 �G, unless jBkj=�Bk > 2:5. We regard such points as outliers because it is highly unlikely for such
strong fields to exist in H i clouds.

2. The interpretation of the profile is complicated. This occurs for some low-latitude profiles. The discarded data include 3C 154,
3C 167, 4C 22.12, and T0629+10.

3. The result is suspicious. This is a subjective judgment based on the combination of signal/noise, profile complexity, and the
presence of other blended strong components in the same profile that might have reliable detections. These cases, in which our
subjective judgment creates criteria, include the following: 3C 192; 3C 274.1; the 18 and 25 km s�1 components of 3C 410; the �7,
4, and 11 km s�1 components of 3C 78; and P0531+19.

This leaves us with a total of 69 statistically usable components. In Table 1, the magnetic fields of the usable components are in
boldface.

9.4. Comparison with Previous Literature

To our knowledge, there exist two sources in our list that have previous published detections of H i Zeeman splitting. These are
the original discovery of H i Zeeman splitting by Verschuur (1969), who observed both Tau A and Cas A; and the interferometric
study of Schwarz et al. (1986), who studied Cas A. The signs of the Cas A Stokes V spectra disagree in these two references. From

TABLE 1—Continued

TB � VLSR �V Ts Tkmax N (H i)20 Bk (l/b/Source)

2.38........... 0.355 � 0.008 5.1 � 0.0 1.79 � 0.04 7.98 � 4.20 69 0.10 7.2 � 1.7 184.6/�5.8/Tau A

18.01......... 0.507 � 0.005 2.8 � 0.0 2.61 � 0.05 45.33 � 2.88 148 1.17 2.1 � 1.4 184.6/�5.8/Tau A

0.00........... 2.634 � 0.105 �48.0 � 0.0 4.22 � 0.08 0.00 � 0.00 388 0.00 9.3 � 0.5 111.8/�2.1/Cas A

0.00........... 1.598 � 0.040 �38.0 � 0.0 6.67 � 0.11 0.00 � 0.00 971 0.00 25.0 � 0.8 111.8/�2.1/Cas A

16.86......... 1.299 � 0.047 �0.7 � 0.0 2.89 � 0.07 23.19 � 1.63 183 1.70 �0.3 � 0.6 111.8/�2.1/Cas A

Notes.—The ordering is by source name as follows: 3C, 4C, P, T, Tau A, Cas A. Temperatures are in K, velocities in km s�1, column densities in 1020 cm�2,
and magnetic fields in �G. Table 1 is also available in machine-readable form in the electronic edition of the Astrophysical Journal Supplement.

Fig. 10.—Derived spectra for Tau A; the layout of this figure is identical to that of Fig. 9, except that here we omit the bottom panel because Tau A is so strong.
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Fig. 11.—Derived spectra for 3C 409; the layout of this figure is identical to that of Fig. 9



observations of a calibration helix as well as the 1665 MHz OH maser source W49, we have determined that Schwarz et al. (1986)
are correct. Verschuur stated that his Stokes V was IEEE LHC–RHC, but this appears to be nothing more than a typographical
error. It is not a fundamental sign error because the signs of his derived Bk are correct. Accounting for this typographical error, the
previous two references and the current work all agree for Cas A, and we agree with Verschuur for Tau A.

9.5. Yet Another Source of Uncertainty in Bk

In x 3 of Paper I, we considered the effect of ordering the absorbing clouds along the line of sight. This affects the derived spin
temperatures. It also can affect the derived magnetic fields, because the Stokes V spectrum from a background cloud is weakened
by a foreground one if the velocity profiles overlap.

This affects the derived Bk only if there is velocity overlap and if the opacities are high. For all of our sources, the fits for the
different orderings are visually identical and their variances differ by insignificant amounts. Thus, as in Paper I, we cannot
determine the line-of-sight ordering. Nevertheless, the ordering affects the derived magnetic field strengths, as it also does with the
spin temperatures in Paper I. For most sources the differences are smaller than the 1 � uncertainty �Bk. For three sources, having a
total of four Gaussian components, the differences are larger. All three sources are at low Galactic latitude where blending is a
problem. We show the spectra for Tau A, 3C 409, and Cas A in Figures 10, 11, and 12, respectively (the Cas A data are from the
Hat Creek 85 foot telescope and are previously unpublished).

Table 2 lists the four components for which Bk is affected by more than the 1 � error �Bk. We list three values of field. Bk;0 is the
value from Table 1; Bk,max and Bk,min are the minimum and maximum values obtained from permuting the line-of-sight orderings.
These differences exceed �Bk but are nevertheless modest fractions of the derived Bk. Consequently, we ignore this extra source of
uncertainty both in Table 1 and in our future analyses.

Fig. 12.—Derived spectra for Cas A; the layout of this figure is identical to that of Fig. 9, except that here we omit the bottom panel because Cas A is so strong.

TABLE 2

Dependence of Bk on Cloud Ordering

Source/VLSR Bk,0 Bk,max Bk,min

Tau A/10.7 .................... �3.09 � 0.55 �3.66 � 0.65 �3.09 � 0.55

Tau A/5.1 ...................... 7.19 � 1.69 10.56 � 2.50 7.10 � 1.67

3C 409/15.7 .................. 5.74 � 1.06 8.03 � 1.47 5.74 � 1.01

Cas A/�48.0 ................. 9.29 � 0.54 9.74 � 0.55 8.70 � 0.55

Notes.—Bk,0 is from Table 1; Bk,max and Bk,min are the largest and smallest fields
derived including opacity effects (see x 9.5). Magnetic fields are in �G and VLSR
in km s�1.
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10. SUMMARY

We discuss the measurement of polarized Stokes parameter profiles (Q, U, V ) from emission/absorption line observations toward
background continuum sources. For each of these Stokes parameters, we derive the opacity profile and the emission profile
expected if the continuum source were absent. We give special emphasis to the evaluation of instrumental effects. A principal
motivation for our study is detection of the Zeeman effect in Stokes V profiles. Arecibo suffers with respect to other telescopes
because its large central blockage produces large sidelobes. The sidelobes are polarized, and their interaction with spatially
extended 21 cm emission produces most of the instrumental contributions to the polarized profiles. These contributions are
particularly serious for emission profiles. But Arecibo’s large collecting area compensates for this problem when measuring opacity
profiles. As a result, our Stokes Vopacity profiles are generally reliable, so we can make 21 cm Zeeman effect measurements in the
Galactic CNM.

In x 2 we outline the basic theoretical concepts involving Stokes parameters in emission/absorption line observations. Here we
derive the fundamental equations (5a)–(5b). This equation relates the observed Stokes parameter profiles (on- and off-source) to
the physically significant polarized opacity profiles and polarized emission profiles. In x 2 we also explain the contribution of the
Zeeman effect to the Stokes V profiles. This contribution is always proportional to the derivative of the Stokes I profile (emission or
absorption), regardless of the line opacity. Therefore, we can always derive line-of-sight magnetic fields by fitting the Stokes V
profile to the derivative of the Stokes I profile.

In x 3 we present equations (10a)–(10d). These are the fundamental equations that we least-squares fit (independently for each
spectral channel) to derive the Stokes V opacity profile and the Stokes V emission profile for each source. These equations include
an instrumental error term that is extensively discussed in later sections. In x 3 we also present the related discussion for Stokes Q,
U profiles, including equation (12). This equation, the analog of equations (10a)–(10d) for Stokes V, includes a rotation matrix to
account for the parallactic angles of the observations.

Much of the paper is concerned with instrumental effects arising from polarized beam structure. This structure interacts with
spatially extended line emission. As a result, instrumental effects appear in the polarized emission profiles and, to a much smaller
extent, in the polarized opacity profiles. In x 4 we describe the nature and the effects of various types of polarized beam structure.
One type is ‘‘beam squint.’’ Beam squint interacts with the first spatial derivative of the Stokes I profile to make instrumental
contributions to the Stokes Q, U, V profiles. Unfortunately, the beam squint contribution to the Stokes V profiles can mimic the
Zeeman effect. If beam squint remains fixed relative to the telescope feed system, then its contributions to the polarized Stokes
profiles vary with the parallactic angle PA. Another type of polarized beam structure is ‘‘beam squash.’’ Beam squash interacts with
the second derivatives of the Stokes I profile to make instrumental contributions to Stokes Q, U, V. If beam squash remains fixed
relative to the telescope feed system, then its contributions vary as 2 PA. For prime focus telescopes, beam squint is theoretically
expected only for Stokes V, and beam squash is expected only for Stokes Q, U. However, Arecibo breaks these rules, having beam
squint and squash in all polarized Stokes parameters. The final type of polarized beam structure arises outside the primary beam
and first sidelobe, in the ‘‘far-out sidelobes.’’ Far-out sidelobes at Arecibo are particularly strong because of the large aperture
blockage. We define all contributions to the polarized Stokes profiles as ‘‘squintlike’’ and ‘‘squashlike’’ if they are functions of PA
and 2PA, respectively. In practice, squintlike contributions may arise from true beam squint (in the primary beam and nearest
sidelobe) and, also, from the far-out sidelobes. The same is true for beam squash.

In x 5 we treat instrumental squintlike and squashlike contributions to Stokes V opacity profiles. These profiles are of particular
interest for the Zeeman effect. Equations (13a)–(13b) express these instrumental contributions to the fundamental fitting equation
(eqs. [10a]–[10d]) as sinusoidal functions of PA (squintlike) and 2PA (squashlike). We fit equations (10a)–(10d) in three ways: (a)
with neither squintlike nor squashlike contributions included, (b) with squintlike contributions only, and (c) with both squintlike
and squashlike contributions. Results of these three types of fits are Stokes V opacity profiles and emission profiles with (a) no
instrumental effects removed, (b) squintlike effects removed, and (c) both squintlike and squashlike effects removed, respectively.
Fits of type (c) are usually best for the Stokes V opacity profiles, allowing us to remove squintlike and squashlike contributions
accurately. In x 5.2, we illustrate these concepts for 3C 138, which has a clearly detected Zeeman effect. In this section, we also
develop a matrix representation of the coupling coefficients between the fitted Stokes V opacity profile for a given source and the
squintlike and squashlike instrumental contributions. From this matrix, we derive a profile of �� 0

V ;2(�) for each source. This profile
represents the maximum possible instrumental contributions to the Stokes V opacity profile after squintlike and squashlike
contributions have been removed by the fitting process. An example for 3C 138 is shown in the bottom panel of Figure 9a. Here the
profile of �� 0

V ;2(�) is insignificant compared to the Zeeman effect in the Stokes V opacity profile. For most sources, the profile
�� 0

V ;2(�) is very small compared to that of the Stokes V opacity profile, another reason to expect that the latter are reliably
determined.

Section 6 treats squintlike and squashlike contributions to the linear polarization Stokes Q, U opacity profiles. Least-squares fits
for squashlike contributions are not possible: squashlike effects have the same 2 PA dependence as true linear polarization, so the
two cannot be distinguished. However, true linear polarization of the H i opacity profile should be very small, particularly for small
sources like 3C 454.3 (angular size 14 milliarcsec). Therefore, the apparent linear polarization we measure in the 3C 454.3 opacity
profile must be instrumental. We judge that the same conclusion holds for all sources, leading to a second method of estimating
instrumental effects in Stokes V opacity profiles. The Arecibo beam squint and squash are known to be about 10 times greater in
Stokes Q, U than in Stokes V. Therefore, we can estimate instrumental polarization in Stokes V opacity profiles by dividing the
apparent linear polarization in the Stokes Q, U profiles by 10. Since squintlike and squashlike effects have already been removed
from Stokes V opacity profiles, this estimate applies to instrumental effects (including those from the far-out sidelobes) that are not
a function of PA or 2 PA. This technique is described in x 7, and an illustrative profile for 3C 138 is shown in the bottom panel of
Figure 9a.
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Our final discussion of instrumental effects (x 8) addresses the reliability of the Stokes V emission profiles. For these profiles, fits
of type (c) usually suffer from large covariance between the PA and 2PA-dependent fit parameters. As a result, the fit parameters are
poorly determined, and the type (c) fits yield very noisy Stokes V emission profiles. An example for 3C 138 is shown in the bottom
panel of Figure 5. In effect, we are unable to remove reliably the squintlike and squashlike contributions from the Stokes V
emission profiles so we cannot derive the Zeeman effect from them. Covariance between the fit parameters would be much less if
we had a larger range of PA included in the data sets for our sources. In x 8 we also independently evaluate the contributions of true
beam squint and squash (from the main beam and the first sidelobe) to the Stokes V emission profiles. We compare these
contributions to the empirically fitted squintlike and squashlike contributions (from the main beam and all sidelobes). The
difference between these two is the contribution from the far-out sidelobes alone. We find that the far-out sidelobes contribute most
of the instrumental effects at Arecibo. We expect these contributions to be mainly squintlike or squashlike, but there might also
other contributions that do not depend on PA or 2PA; such contributions contribute additional uncertainties. For all these reasons,
Zeeman effect results derived from Arecibo Stokes V emission profiles are unreliable.

Section 9 presents the Stokes I and V opacity profiles for all sources, along with profiles of possible instrumental effects in the
latter. Profiles for 3C 138 are shown in Figure 9a, profiles for other sources others are provided electronically. This section also
presents a tabular list of parameters, including line-of-sight magnetic field strengths, for the CNM Gaussian components in the
Stokes I opacity profiles. We select a sample 69 Gaussian components for which �Bk (uncertainties in the derived Bk) should be
Gaussian distributed and, additionally, for which �Bk < 10 �G. We will subject this sample to a future statistical analysis
of magnetic field strengths in the CNM. In x 9, we also discuss another source of uncertainty in derived magnetic field strengths,
the unknown sequential order along the line of sight of the various CNM velocity components. However, this source of error has no
significant effect upon the qualitative or statistical properties of the magnetic field measurements.
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