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ABSTRACT

Major changes from previous version:

change name of package to RHSTK 2021.

TEX file resides in .../dzd4/heiles/rhstk 2021/docs/rhstk/rhstk 4.0.tex

Include pol calibrator source lists in Tables 1 and 2

fitting for Mueller matrix params for 3 types of telescope: traditional alt/az, equatorial

(eg GALT) and weird (FAST)

3 versions of Mueller fitting programs for the 3 telescope types

define 2 stages of calibration, Stage 1 and Stage 2

match notation in IDL procs to notation in this document

use onoffs to pacoeffs instead of stripfit to coeffs

better discussion of example in section 11.

IMPORTANT: section 5.6 is new.

=======================================================

We discuss practical aspects of all-Stokes spectropolarimetric calibration for single-

dish radio telescopes using digital spectrometers that produce auto- and cross-

correlation products. We describe our polarization-related software package, which

we call Robishaw/Heiles SToKes (RHSTK 2021), and provide an example for reducing

position-switched data and deriving Mueller matrices.

We begin with the basics—theory and practice—in §describe the quagmire of stan-

dards and conventions for polarization, and even magnetic field direction, in §2. We

then attempt to describe how to use RHSTK 2021 for determining the Mueller matrix

coefficients and using them to determine source polarization properties.
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1. ABOUT RHSTK 2021

1.1. History and Philosophy

Our Robishaw-Heiles SToKes (RHSTK 2021) software, written in IDL, originates from work

with the NRAO 140-foot and, particularly, Arecibo in the late 1990’s and early 2000’s. A few years

ago we began to organize and generalize this RHSTK 2021 restructured version, which is generally

applicable and straightforwardly maintainable. ‘Generally applicable’ means that it can deal with

all kinds of telescope mount—alt/az, equatorial, FAST—and inputs to procedures are variables

and spectra whose format is simple, not tied to any particular telescope, so that the data can

be manipulated by standard IDL commands. Earlier versions of RHSTK included more extensive

discussions of Arecibo and the GBT; we have eliminated those in RHSTK 2021 because Arecibo

no longer exists and the hardware at GBT has totally changed. The RHSTK 2021 software is

applicable at any single-dish radio telescope.

1.2. Continuum Observers!!

This memo is written with multichannel spectra in mind. Nevertheless, even if you are only

interested in the continuum, you must perform the spectral reduction and add up all the spectral

points after the calibration. You must not add them all up beforehand. The reason is the phase

change with frequency discussed in §4.3, which is produced by, primarily, the unequal cable lengths

between the feed and the spectrometer input. You must correct for this before summing the cross-

spectral points.

1.3. ¡¡¡Important Comment on Mueller Correcting for Native Linear Polarization!!!

For native linear polarization, the measured Stokes Qmeas = XX − Y Y and is the difference

between two large numbers. The XX and Y Y spectra have independent gain calibrations which

are not perfect, for three reasons: (1) the DIODEON/DIODEOFF deflection has some noise; (2)

the assumed Diode values are not perfect, and the actual ones certainly depend on frequency and

might even depend on time; and (3) the X and Y receiver gains almost certainly change a little

with time while observing after the intensity calibration was performed. Thus, for native linear

polarization, the Qmeas is not accurate. However, the Umeas is accurate because it is determined by

the cross-product XY , for which gain uncertainties and fluctuations are unimportant.

When you correct for parallactic angle by applying MρX as in equation 15, you apply a rotation

matrix to obtain the source Stokes parameters (Qtel, Utel) from the measured ones (Qmeas, Umeas).

This means that both Qtel and Utel contain the inaccurately measured Qmeas. Accordingly, when

Mueller-correcting native linear polarizations, you might well do better by not correcting for paral-

lactic angle. You can then do a least-squares fit of the parallactic angle variation of the accurately-
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measured Umeas using equation 31.

1.4. ¡¡¡Important Comment on Observing polarization of extended sources!!!

Polarization measurements of extended sources are greatly complicated by the telescope side-

lobes, which tend to be strongly polarized. Even for an unpolarized source, the angular structure

of the source is sampled by the angular structure of the polarized sidelobes and this can produce

a spurious observed polarization. This is particularly serious for 21-cm line emission, where these

instrumental effects are usually the limiting factor in deriving the weak polarization produced by

Zeeman splitting.

The GBT is a particularly difficult case. At the GBT, the L-band system (1-2 GHz) uses

the secondary focus. There are severe sidelobes, particularly from spillover around the secondary

reflector, and because the Galactic 21-cm line exists everywhere on the sky, these sidelobes always

see it. This contaminates the measured 21-cm line spectra. Robishaw & Heiles (2009) developed

an approximate model of these sidelobes. They found three components: (1) spillover around

the secondary reflector, which is the most serious; (2) a component caused by reflection from the

screen, which is located near the secondary; and (3) the Arago spot.1 RHSTK 2021 contains an IDL

procedure called predict gbt sidelobes rhstk to estimate the sidelobe contributions for Stokes

I.

1.5. Basics and Fundamental Assumptions

For the purposes of description, we implicitly assume native linear polarization. We therefore

designate self-products by XX and Y Y and cross-products by XY and Y X, as described in §4.

After phase and amplitude calibration of the self- and cross-products, the measured Stokes parame-

ters are given by equation 11. If the system has native circular polarization, then almost everything

in this memo remains the same except for some obvious changes.

1.6. Source Selection for calibrating linear and circular polarization

Classically, one derives the Mueller matrix from a series of scans on a linearly polarized cali-

bration source such as 3C286. This series should cover a substantial range in parallactic angle; the

larger the range, the more accurate the result. So request telescope time and plan your observations

accordingly!

1After Robishaw & Heiles (2009) appeared, the NRAO staff published a more detailed and accurate model of the

sidelobes; see Boothroyd et al. (2011).
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The polarization memo by Heiles and Fisher (1999) contains lists of suitable single-dish po-

larization calibrators at 1.4, 5, 8, and 14 GHz. These lists are reproduced here in Tables 1 and 2.

Caveats:

1. Data for these tables were obtained before the beginning of the 21st century. Sources can

be time-variable. The polarization properties of some sources have been re-determined with

more recent data.

2. The Earth’s ionosphere introduces time-variable Faraday rotation which can change position

angles by ∼ 20◦ for the HI line.
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Table 1. POLARIZATION RESULTS: SOME SINGLE-DISH CALIBRATORS AT 1420

MHZ

Source α1950 δ1950 S, Jy Ps, Jy %Pol θs

3C27 00 52 44.9 68 06 06 6.65 0.93 7.02± 0.03 131.9± 0.5

3C27 00 52 44.9 68 06 06 6.65 0.82 6.15± 0.35 131.8± 1.8

3C27 sp 00 52 44.9 68 06 06 6.65 0.52 3.9± · · · 122.3± · · ·

3C29 00 55 00.7 –01 40 30 5.21 1.15 11.01± 0.65 171.6± 0.4

3C29 00 55 00.7 –01 40 30 5.21 1.10 10.52± 0.28 171.6± 0.4

3C33 01 06 14.2 13 03 37 12.53 1.81 7.09± 0.42∗ 68.6± 0.9∗

3C33 01 06 14.2 13 03 37 12.53 1.76 6.92± 0.35∗ 67.4± 0.7∗

3C41 AO 01 23 54.7 32 57 36 3.5 0.42 6.0 48.9

3C98 03 56 11.0 10 17 41 10.25 1.05 5.10± 0.15 72.0± 0.8

3C98 03 56 11.0 10 17 41 10.25 0.96 4.70± 0.10 71.0± 0.6

3C123 04 33 55.2 29 34 14 45.16 0.45 0.50± 0.19∗ 140.2± 5.5∗

3C123 04 33 55.2 29 34 14 45.16 0.33 0.36± 0.13∗ 153.4± 5.1∗

3C138 05 18 16.5 16 35 26 8.88 1.11 6.81± 0.41 176.2± 1.1

3C138 05 18 16.5 16 35 26 8.88 1.05 6.48± 0.11 176.9± 0.3

3C144-TAU 05 31 31.0 21 59 17 895.50 14.68 0.82± 0.08 87.9± 1.6

3C144-TAU 05 31 31.0 21 59 17 895.50 13.92 0.75± 0.09 86.0± 2.5

ORION-A 05 32 44.0 –05 24 54 389.65 0.86 0.11± 0.10 · · ·
ORION-A 05 32 44.0 –05 24 54 389.65 0.94 0.12± 0.14 · · ·

3C147.1 05 39 11.0 –01 55 36 57.78 0.69 0.60± 0.30∗ 84.0± 7.2∗

3C147.1 05 39 11.0 –01 55 36 57.78 0.68 0.59± 0.10∗ 84.5± 2.4∗

P0736+01 AO 07 36 42.6 01 44 00 2.9 0.48 8.2 103.4

3C227 09 45 07.8 07 39 09 7.18 0.74 5.14± 0.37 142.4± 1.0

3C227 09 45 07.8 07 39 09 7.18 0.66 4.56± 0.06 144.8± 0.7

3C227 sp 09 45 07.8 07 39 09 7.18 0.47 3.3± · · · 146.7± · · ·
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Table 1—Continued

Source α1950 δ1950 S, Jy Ps, Jy %Pol θs

3C270 12 16 51.2 06 06 13 17.20 2.62 7.62± 0.30 122.1± 2.3

3C270 12 16 51.2 06 06 13 17.20 2.63 7.63± 0.17 122.3± 1.5

3C270 sp 12 16 51.2 06 06 13 17.20 2.22 6.3± · · · 128.1± · · ·

3C273 12 26 32.9 02 19 39 49.77 1.23 1.24± 0.04 149.7± 0.9

3C273 12 26 32.9 02 19 39 49.77 1.17 1.17± 0.06 151.0± 0.7

3C274 12 28 17.8 12 39 50 213.56 4.27 1.00± 0.05 144.5± 5.6

3C274 12 28 17.8 12 39 50 213.56 3.89 0.91± 0.09 144.5± 6.3

3C274.1 12 32 57.0 21 37 06 2.64 0.77 14.52± 1.70∗ 149.9± 1.7∗

3C274.1 12 32 57.0 21 37 06 2.64 0.61 11.61± 0.37∗ 152.6± 0.5∗

3C274.1 AO 12 32 57.0 21 37 06 2.64 0.67 12.8 158.6

3C286 13 28 49.7 30 46 02 14.78 2.74 9.52± 0.16 27.4± 0.1

3C286 13 28 49.7 30 46 02 14.78 2.60 9.04± 0.13 27.4± 0.2

3C286 AO 13 28 49.7 30 46 02 14.78 2.86 9.7 28.8

3C286 sp 13 28 49.7 30 46 02 14.78 2.34 7.9± · · · 34.3± · · ·

P1414+11 14 14 27.3 11 02 16 4.14 0.82 9.89± 0.22 25.4± 3.1

P1414+11 14 14 27.3 11 02 16 4.14 0.78 9.45± 0.15 26.4± 0.2

3C336 AO 16 22 33.5 23 52 06 2.7 0.15 2.7 29.1

3C348 16 48 40.1 05 04 28 43.69 1.37 1.57± 0.17∗ 57.0± 1.5∗

3C348 16 48 40.1 05 04 28 43.69 1.27 1.45± 0.09∗ 57.1± 0.8∗

3C348 sp 16 48 40.1 05 04 28 43.69 1.31 1.5± · · · 68.1± · · ·

M17 18 17 33.0 40 35 02 558.25 9.60 0.86± 0.02 81.4± 1.3

M17 18 17 33.0 40 35 02 558.25 8.49 0.76± 0.02 82.8± 0.7

W43 18 44 57.0 –01 56 36 140.50 3.04 1.08± 0.15∗ 85.1± 1.9∗

W43 18 44 57.0 –01 56 36 140.50 2.78 0.99± 0.12∗ 86.5± 1.7∗

3C399.1 AO 19 14 00.0 30 14 23 2.7 0.56 10.3 53.6

3C405-CYG 19 57 44.5 40 35 02 1654.90 16.88 0.51± 0.05 175.7± 6.3

3C405-CYG 19 57 44.5 40 35 02 1654.90 17.54 0.53± 0.06 178.3± 1.5
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Table 1—Continued

Source α1950 δ1950 S, Jy Ps, Jy %Pol θs

3C433 sp 21 21 30.6 24 51 18 11.68 1.67 7.1± · · · 136.0± · · ·

CTA102 sp 22 30 07.7 11 28 23 6.37 0.65 5.1± · · · 105.3± · · ·

3C452 sun 22 43 33.0 39 25 28 14.40 2.74 9.52± 0.16 27.4± 0.1

3C452 sun 22 43 33.0 39 25 28 14.40 2.60 9.04± 0.13 27.4± 0.2

3C452 sp 22 43 33.0 39 25 28 9.71 1.22 6.3± · · · 13.9± · · ·

3C454.3 22 51 29.4 15 52 56 13.56 2.09 7.69± 0.55∗ 67.8± 1.0∗

3C454.3 22 51 29.4 15 52 56 13.56 1.81 6.67± 0.22∗ 68.0± 0.5∗

3C454.3 AO 22 51 29.4 15 52 56 13.56 1.57 5.8 70.6

CAS-A 23 21 07.0 58 33 48 2032.00 10.97 0.27± 0.18 4.2± 8.8

CAS-A 23 21 07.0 58 33 48 2032.00 7.72 0.19± 0.06 4.5± 2.7

Note. — Column 1 is the source name, column 2 and 3 the 1950 equatorial coordinates,

column 4 the flux density S in Jy (S = Stokes I
2 ), column 5 the polarized flux density Ps =

(Q2
s +U2

s )1/2 in Jy, column 6 the percent polarization (defined as 100Ps
2S ), column 7 the position

angle.

Note. — Sources listed twice were observed during Jan 99. The first listing was derived from

the Stokes Q (the difference between orthogonal linear polarizations) and the second from the

Stokes U (the cross-correlation of the two linears). The letters “sp” means that the source was

observed during the Spring 1998 observing period; uncertainties are not available and the data

somewhat less accurate than in Jan 1999. “sun” means that the observations were severely

affected by the Sun and should not be trusted, and in particular that the errors are almost

certainly underestimates.

Note. — Most results were derived from at least two 12 position angle datasets at the

140-foot telescope. For them, the quoted errors are derived from the differences among those

datasets. For results whose errors have the superscript ∗ there was only a single 12 position
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angle dataset and the quoted errors are too small.

Note. — Sources followed by “AO” were observed at Arecibo during Feb99; their results

should be more accurate than the 140-foot results.
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Table 2. SOME SINGLE-DISH CALIBRATORS AT 4.8, 8.0, and 14.5 GHZ

Source α1950 δ1950 S4.8 S8.0 S14.5 P4.8 P8.0 P14.5 θ4.8 θ8.0 θ14.5

NRAO5 00 03 40.3 –06 40 17 2.2 2.7 2.3 3.5 3.5 5.0 40 20 20

3C10 00 22 32.0 63 51 42 15.5 8.0 1.7 0.5 1.0 2.5 110 140 110?

3C48 01 34 49.8 32 54 21 5.40 3.56 1.84 4.02 5.17 6.62 104.0 113.7 115.2

3C58 02 01 52.0 64 35 06 29.3 28.0 23.1 5.6 5.5 5.5 163 177 7

3C66B 02 20 01.9 42 45 54 3.26 1.78 0.81 3.63 3.6 2.5 70.5 79. 94.

P0218+35.7 02 18 04.1 35 42 32 1.3 1.2 1.2 2.5 2.0 7.0 20 40 50

3C83.1 03 15 00.0 41 41 12 1.8 1.1 0.6 5.5 6.0 6.5 110 115 120

3C84 03 16 29.6 41 19 52 22 21 19 0.05 0.05 0.05 — — —

NRAO140 03 33 22.6 32 08 37 1.6 1.4 1.7 4.0 4.5 3.0 60 45 50

3C93 03 40 51.6 04 48 22 0.87 0.59 0.32 7.5 7.4 10.6 139.2 131. 134.

4C76.03 04 03 58.6 76 48 54 2.8 2.2 1.5 0.5 2? 3.0 0 100? 50

3C138 05 18 16.5 16 35 27 3.8 2.8 1.5 10.5 11.0 11.0 170 170 170

P0521–36.5 05 21 12.9 –36 30 17 8.0 7.5 5.0 3.5 2.2 2.0 75 70 70

3C144 05 31 31.0 21 59 17 596 560 430 5.0 6.8 9.9 141 146 152

3C147 05 38 43.5 49 49 43 7.5 5.5 2.8 0.3 1.0 3.0 0 150 50

3C153 06 05 44.5 48 04 49 1.32 0.81 0.40 3.94 5.1 5.2 52.3 50. 54.

3C196 08 09 59.4 48 22 07 4.3 2.6 1.2 2.3 2.0 2.0 120 150 160

P0836+71.0 08 36 21.5 71 04 22 2.3 2.6 2.3 7.0 4.8 4.0 100 105 125

3C207 08 38 01.8 13 23 06 1.3 1.3 1.3 3.0 3.0 2.0 25 20 15

3C216 09 06 17.3 43 05 59 1.6 1.3 1.1 1.5 1.5 2.0 90 0 150

3C219 09 17 50.7 45 51 44 2.4 1.4 0.8 3.0 4.0 2.5 145 140 130

3C245 10 40 06.1 12 19 15 1.61 1.33 0.98 8.38 7.00 5.10 33.0 27.9 29.4

P1127–14.5 11 27 35.7 –14 32 55 3.8 3.3 2.6 3.5 3.5 3.0 160 160 160

3C273 12 26 33.2 02 19 43 37 44 48 3.3 3.5 3.0 170 155 148

3C274 12 28 17.6 12 40 02 71 49 29 0.48 1.6 2.9 40 87 53

3C280 12 54 41.4 47 36 32 1.66 1.07 0.54 7.64 8.2 11.2 44.2 51.2 53.2

3C286 13 28 49.7 30 45 59 7.37 5.53 3.53 11.09 11.46 11.82 33.21 33.13 35.21

3C330 16 09 16.2 66 04 30 2.24 1.32 0.64 3.59 4.2 4.0 131.5 132. 108.

MK-501 16 52 11.8 39 50 25 1.6 1.6 1.3 2.7 3.0 3.0 10 5 0

3C353 17 17 55.6 –00 55 54 22.2 15.5 — 5.2 4.4 — 87 79 —

3C390.3 18 45 45.5 79 42 45 4.4 3.1 1.5 6.0 7.0 4.0 25 25 25

3C395 19 01 02.2 31 55 12 1.5 1.5 1.3 4.0 3.5 3.5 65 45 30

P2005+40.3 20 04 13.1 40 20 34 2.7 2.2 1.8 4.5 2.5 2.5 20 50 60

P2014+37.0 20 14 34.6 37 05 03 3.5 2.5 0.9 7.0 7.0 7.0 103 125 135

3C452 22 43 32.8 39 25 28 3.14 1.82 0.63 7.14 7.0 5.9 121.4 159.6 173.

Note. — Column 1 is the source name, column 2 and 3 the 1950 equatorial coordinates, column

4-6 the flux density in Jy (S = Stokes I
2 ), columns 7-9 the percentage polarization (defined as

100×polarized intensity
2S ), columns 10-12 the position angle in degrees. Subscripts indicate frequency in
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GHz.

Note. — We perused the University of Michigan catalog (Aller et al 1996) and include all

reasonably strong sources whose polarization properties have not varied terribly much over the

period 1990 → 1999.0. Sources with names in boldface are stable and have typical uncertain-

ties equal to a few or less in the last quoted decimal place; these values were kindly provided

by Hugh Aller. For the others, values were estimated by eye from graphs and uncertainties are

at least a few 0.1% in S, a few 0.1% in P , a few degrees in θ; some sources exhibit distinct

time variability and the user should check with recent observations. Most positions are from

Kuhr et al (1981); some are from BDFL and Simbad. The Michigan database is on the web:

http://www.astro.lsa.umich.edu:80/obs/radiotel/radiotel.html.



– 13 –

You can use our IDL routine find gbt polcal to plot the parallactic angle swing of the Heiles

& Fisher calibrators as a function of LST (read the documentation for details). Figure 1 shows the

parallactic angle swing for a set of calibrators over the LST range 8–16 hours.

8 10 12 14 16
LST (hr)

−50

0

50

P
A

 (
d

eg
)

(   P,  S) Source
( 8.4,  2) 3C245 *
( 3.5,  4) PKS1127−145
( 3.3, 37) 3C273
( 0.5, 71) 3C274
(11.1,  7) 3C286 *

Fig. 1.— Parallactic angle swing for some polarization calibrator s over the LST range 8–16 hours. The legend lists

the calibrators along with their total flux density S in mJy and the percentage polarization P at 4.8 GHz. This plot

was made by find gbt polcal.

At cm wavelengths, there are no continuum sources having strong Stokes V. This is not a

problem for determining Mueller matrix parameters, because all but one of them can be obtained

from the linearly polarized calibration sources. The errant parameter is the sign of Stokes V, for

which one requires either a circularly-polarized calibration source or a locally-produced test signal2.

The only astronomical sources with strong circular polarization are pulsars and OH masers. For

spectropolarimetry, pulsars present the additional complication of time-resolving the spectrum. OH

masers are much more convenient, but offer only highly restricted frequency coverage. Nevertheless,

combining their Stokes V sign at one frequency with the linearly-polarized continuum results for

a broader range of frequencies works well. Problems with using OH masers include their time

variability and their clumpy structure on scales of arcminutes to degrees. Time variability only

occasionally affects the sign of Stokes V. The clumpy structure makes it difficult to compare spectra

from large and small telescopes; the larger beam of a small telescope means more OH maser clumps

contribute to its OH maser spectrum, making it more complicated and harder to interpret. This is

particularly the case for W49.

2When using locally-produced test signals, remember that the sign of V changes upon reflection!
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1.7. Use more than one calibration source

After deriving the Mueller matrix, you should check a second linearly-polarized calibration

source by observing, calibrating, and Mueller-correcting it. This observation can be quick—just

a single on/off will do. The reason is to make sure that the ‘handedness’ of the position angle of

linear polarization is defined properly, i.e., that position angle increases from North towards the

East; this can occur if the cables for the two polarizations are interchanged (equations 11 and 12).

2. STANDARDS AND SIGN CONVENTIONS: A BIG MESS

The magnificent review of the Zeeman-splitting literature of radio astronomy by Robishaw

(2008) makes clear the rampant confusion regarding definitions and signs of Stokes V and the

derived magnetic fields. Accordingly, we provide here a very brief summary.

The International Astronomical Union has adopted definitions for the two circular polariza-

tions and, also, Stokes V (IAU 1974). The IAU definitions for the polarizations follow the IEEE

definitions, which are opposite to those conventionally used by physicists. The IEEE definition of

RCP is: as viewed from the transmitter, the E-vector rotates clockwise. The IAU definition of

Stokes V is: V = RCP − LCP, where the polarizations follow the IEEE definition. This is opposite

to that historically used by many radio astronomers, who followed the definition of Kraus (1966):

V = LCP − RCP, where the polarizations follow the IEEE definition.

We now always use the IAU-sanctioned definitions: RCP rotates clockwise as viewed by the

transmitter, and V = RCP – LCP (IEEE definition).

The 1665 MHz OH maser profile for W49 and the Zeeman splitting of the 21-cm line in

absorption against Cas A, shown in Figure 2, are easily detectable and act as a good system and

sanity check. Coles & Rumsey (1970), used the IAU definition—even though their work pre-dates

the IAU definition!). To our knowledge, the Cas A profile in Figure 2 is the only publicly-available

one that follows the IAU definition for Stokes V . Robishaw (2008) stresses that all published Stokes

V profiles for Cas A either do not follow the IAU convention or are ambiguously or incorrectly

defined.

With these definitions, and in addition the common Zeeman convention that positive B points

away from the observer, the signs of the derived fields are most straightforwardly given by consulting

Table 2.2 of Robishaw (2008), which is reproduced here as Figure 3. For emission lines, this figure

can be summarized succinctly: For positive B, RCP lies at a smaller frequency than LCP.

It is worth more than a footnote to mention here that the convention for magnetic field sign used

by radio astronomers making Faraday rotation measurements is exactly opposite to the Zeeman

convention. Faraday rotation experts will tell you that a positive field points towards the observer.

This convention was arbitrarily chosen by Manchester (1972) because he preferred that a positive
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Fig. 2.— Left panel: The four Stokes parameters for W49 (Coles & Rumsey 1970). Right panel: Stokes I (top) and V

(bottom) for Cas A, from decades-old observations with the Hat Creek 85 foot. In both, Stokes V is plotted according to the

IAU convention.

rotation measure also correspond to a positive magnetic field (he even points out that this is

opposite to the Zeeman convention!). The Zeeman convention has a nice analogue: velocities are

also defined to be positive when pointing away from the observer. This convention had been firmly

established since the early 1900s, and the early Faraday rotation papers (e.g. Burn 1966) suggest

that a positive field also points away from the observer, so it was a questionable decision to have so

cavalierly changed the established convention. Clearly for the worse, we are left with this duality

in the polarization world and not many astronomers are aware of this. It should be clear that one

must be very careful to state one’s conventions.

We show two examples of properly-defined Stokes V from real observations. Figure 2 shows

the 21-cm line absorption line spectrum for Cas A in Stokes I and Stokes V . The dashed

green lines are Gaussian fits with three components. For the three components with velocities

[−48.0,−38.1,−0.7] km/s, the derived line-of-sight magnetic field strengths are [+7.8,+18.1,−0.0]±
[0.5, 0.6, 0.8] µG, respectively. WE SHOULD PROBABLY ELIM-
INATE THE IDL PROCEDURE NAMES BE-
CAUSE THIS DOCUMENT IS MORE CON-
CERNEDWITHGETTING POLARIZATIONS
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Fig. 3.— Obtaining the sign of B from Stokes V , when V is plotted against frequency. From Robishaw (2008),

Table 2.2.

PROPERLY. WHAT DO YOU THINK?? We fitted

these components with optical depth profiles using our IDL procedure tbgfitflex exp.pro and

we obtained field strengths with zgfit selfabs.pro, both found in rhstk 2021/procs/zeeman.

Equivalent results can be obtained by fitting negative Gaussians (instead of optical depth profiles)

using gfit.pro and zgfit.pro. These programs give the correct signs of derived fields and return

the splitting in units of the horizontal axis, e.g. km/s. One must then convert these velocity-

splitting units to Hz and then, for the 21-cm line, divide by the Zeeman splitting coefficient3 for

the 21-cm transition, b = 2.8 Hz µG−1.

3. ALL-STOKES CALIBRATION IN A NUTSHELL: STAGE 1, STAGE 2

Figure 4 is a block diagram showing a telescope with two signal paths, one for each polarization,

labeled ‘X’ and ‘Y’. These might be either approximately orthogonal linear polarizations or circular

polarizations. The essence of all-Stokes observing is to measure the time-average self-products XX

and Y Y together with the cross-products XY and Y X. These products are computed by the digital

3The Zeeman splitting coefficient for a radiative transition depends on the Landé g-factor for that transition and

the Bohr magneton; see Heiles et al. (1993) for more details.
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spectrometer, labeled ‘CORRELATOR’ in Figure 4. The spectrometer uses either the XF or FX

technique and provides four spectra (see §4.1), which refer to the signals presented to the correlator

input. The correlator inputs differ from the astronomical electromagnetic waves because they have

gone through the telescope system, which includes the feed, electronics, and cables. Inside the

correlator, these analog signals are digitized.

AMPSG
X

G
Y

FEEDS

TCAL

T
X

T
Y

OTHER
ELECTRONICSG

A
G

B

CORRELATOR

L
X

D
X

L
Y

D
Y

Fig. 4.— Block diagram of a dual-polarized single-dish radio telescope. Thick lines represent time-independent

aspects, the parameters of which include phase delays (LX , LY ) and (TX , TY ); these are incorporated into the angle ψ

in the feed’s Mueller matrix MRX (§5.5). Thin lines represent time-variable aspects, the parameters of which include

the r.f. amplifier gains (GX , GY ), the ‘other electronics’ gains (GA, GB), and the delays caused by cable length and

electronics represented by the lengths (DX , DY ); all of these quantities are time-variable and are calibrated frequently

using the Noise Diode.

We are interested in the astronomical signals, so we need to remove the effects of the telescope

system. In other words, we need to calibrate the measured correlation products and turn them into

the four Stokes parameters. This is done in two explicit stages:

1. Stage 1 calibrates the self- and cross-products to units of Kelvins and calibrates the phase

difference between the two polarization channels to its reference value. These calibrations use

a standard noise source called the ‘Noise Diode’ whose intensity and relative phase injected

into the two polarization channels are constant in time. We measure the Diode deflection

(DIODEON – DIODEOFF) with the correlator, which tells us the gains and relative phase

of the thin lines in Figure 4, which delineate the telescope system after the point where the
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Diode is injected.

The thin-line portion of Figure 4 is time-variable. Consider the relative phase of the two signal

paths. This depends on at least two things: the cable length difference and the phase delays

produced by active circuit elements such as amplifiers. The cables can be very long (measured

in hundreds of meters at Arecibo, and thousands at the GBT), so thermal expansion plays a

role in their lengths; moreover, there is no guarantee that individual cables used for each signal

path don’t happen to get interchanged, either by a technician or by automatic assignments

of optical fibers by the system. The gain and phase delay of an amplifier depend on applied

voltages and temperature, and moreover an individual amplifier usually produces a 180◦ phase

jump; the number of amplifiers can change as gains are automatically adjusted.

2. Stage 2 combines these calibrated products and either derives or applies the system Mueller

matrix and the source polarization properties. In stage 2, we can either (1) apply the XSsys-

tem Mueller matrix to derive the source polarization parameters, (2) determine the system

Mueller matrix, or sometimes (3) both(!). The Mueller matrix calibrates the thick lines in

Figure 4, which delineate the telescope system before the Diode is injected. This includes

imperfections of the feed and the path length difference DY −DX .

We regard the thick-line portion of Figure 4 as constant in time; this part is embodied in the

feed’s Mueller Matrix MρX (§5.3). This portion includes the feed and Noise Diode circuitry.

These components are mechanical structures and don’t change without good reason. What’s

important for polarimetry are the dimensions and cable lengths, so even if the Noise Diode itself

is replaced without changing cables, the thick-line portion remains unchanged for polarimetry.

Of course, a different Noise Diode will produce different noise power, which changes the

overall intensity calibration, but not the polarization calibration. An astronomical observer

is usually given the Diode strength in Kelvin, which is its equivalent antenna temperature,

and one normally assumes it to be reliable and constant with time; this is usually a good

approximation.

4. STAGE 1 BASICS: INTENSITY AND PHASE CALIBRATION OF THE

MEASURED SELF- AND CROSS-PRODUCTS

4.1. Measuring Self- and Cross-Products with Digital Methods

The time-averaged voltage products are derived from digital samples in one of two ways.

Historically, the XF correlation technique4 prevailed because of its simpler hardware requirements.

With XF, one uses a correlation spectrometer, which produces time-averaged auto- and cross-

correlation functions (ACFs and CCFs, respectively). These are Fourier transformed, usually in a

4The “X” represents correlation and the “F” represents a Fourier transform.
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general-purpose computer, to produce power spectra. Each ACF is computed for N positive lags;

negative lags are unnecessary because autocorrelations are symmetric with respect to lag. The

ACFs are averaged over time and the Fourier transform (FT) of the resulting average ACF gives

the self-power spectrum. Because the ACF is symmetric with respect to lag, its Fourier transform

is real and symmetric with frequency, so each self-product power spectrum has N independent

channels. Symbolically, for the self-product spectra we write

XX = FT〈ACF(VX)〉 , (1a)

Y Y = FT〈ACF(VY )〉 . (1b)

where VX means voltage for polarization X, etc. The cross-correlation of the two polarizations is

not symmetric with lag, so it must be computed both for N positive and N negative lags. Its FT

is complex with Hermitian symmetry, so the cross-power spectrum can be regarded as consisting of

a real and imaginary part, each with N independent channels. Symbolically, for the cross-product

spectra we write

XY = Re(FT〈CCF(VXVY )〉) , (2a)

Y X = Im(FT〈CCF(VXVY )〉) . (2b)

Today, the FX technique is favored because of the heavy computing ability of FPGAs and GPUs.

With FX, each polarization is sampled at rate ts over time interval 2T , providing 2N = 2T
ts

samples.

This block of data is Fourier transformed, producing a complex transform of 2N channels with

Hermitian symmetry having N positive-frequency and N negative-frequency channels. The self-

product power spectrum is this FT times its complex conjugate, and because of the Hermitian

symmetry, it is real with the N negative- and positive-frequency portions identical. Thus, it is

a power spectrum with N independent channels. Similarly, one calculates cross-product power

spectra by multiplying the Fourier transforms of the two polarizations with both possibilities of

complex conjugate (eq. 4a). This produces a complex cross-power spectrum having 2N independent

channels, split between negative and positive frequencies. This cross-power spectrum does not have

Hermitian symmetry, so it has a real part and an imaginary part, each with N independent channels.

Thus, we have four spectra of length N . Symbolically, for the self-product spectra we write

XX = 〈FT(VX)FT(VX)〉 , (3a)

Y Y = 〈FT(VY )FT(VY )〉 , (3b)

and for the cross-product spectra

XY =
[
〈FT(VX)FT(VY )〉+ 〈FT(VX)FT(VY )〉

]
, (4a)

Y X = i
[
〈FT(VX)FT(VY )〉 − 〈FT(VX)FT(VY )〉

]
, (4b)
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For both the XF and FX techniques we obtain two self-product and two cross-product spectra.

For the cross-products, we can speak of the Real and Imaginary parts of XY (f). Above, and in

the rest of this document, we use the shorthand notation

XY ≡ Re(XY (f)) (5a)

Y X ≡ Im(XY (f)) (5b)

With this, the phase difference between X and Y is

∆θ = atan

(
Y X

XY

)
(6)

4.2. The power gains of X and Y signal paths

Most observers are not concerned with polarization information, so they treat the X and Y

signal paths independently. They turn on and off the Diode and measure its deflection in terms of

correlator counts; knowing the Diode’s strength in Kelvin, this provides the ‘Counts per Kelvin’,

which we call CpK. This is a power gain, not a voltage gain; that is, CpK relates the equivalent

system temperatures to the counts of the self-products XX and Y Y . The numerical value of CpK

for each signal path depends on the electronics, in particular the gains of the amplifiers in the chain

(GX and GA for the X-path in Figure 4). Being active elements, some of which are cryogenically

cooled, these gains cannot be considered constant with time, and they are calibrated at intervals

that may be separated by order of minutes. The calibration procedure uses the Diode deflection,

i.e., the comparison of DIODEON and DIODEOFF measurements made close in time.

The gain, i.e. CpK, is a very strong function of frequency within the observing band. Band-

limiting filters define the spectral bandpass that enters the digital spectrometer, and their gains

vary between almost zero and the maximum within the bandpass. The black and magenta curves

of Figure 5 show typical examples (top left panel for Arecibo’s Interim Correlator, top right for

the GBT’s Spectral Processor). We characterize this frequency-dependent gain by two concepts.

One is a representative value of CpK over the bandpass, and the other is the ‘bandpass shape’.

We define the former by averaging over a specified spectral channel range in the output spectrum,

which normally includes most of the bandpass except for the ends.

4.3. The Relative Phase Delay Between X and Y Signal Paths

To derive polarization, we must measure the cross-products of the X and Y signals. This

cross-correlation depends not only on the above-defined gains, but also on their relative phase

delay ∆θ. We need to use the Diode for calibrating this phase difference. If each signal path has

its own Diode, so that the X and Y Diode voltages are uncorrelated, then the XY product for the

Diode deflection is zero, so we cannot measure the relative phase delay. However, we arrange that
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the Diode deflections are correlated. To accomplish this, one can use a single Noise Diode and a

power splitter (as is done in Figure 4, and at the GBT and Arecibo); or one can insert the noise in

the feed, or at the paraboloid’s vertex, by radiating the Diode’s power with a probe at 45◦ to the

orthogonal X and Y feed probes (as was done with the Hat Creek 85-footer).

The relative phase of the X and Y Diode deflections depends on, at minimum, the following

four factors. The first is constant in time and, consequently, is embodied in the Mueller Matrix

correction; the others need to be calibrated concurrently.

1. The phase difference between the correlated Diodes as seen by the two first amplifiers. If

the Diode is injected with a waveguide probe or vertex radiator, this phase difference should

depend only on the length difference of the cables that connect the feed to the amplifiers. If

it is injected by cables, using a power splitter and directional couplers as in Figure 4, then

this phase difference also results from cable length differences in the cables connecting the

Diode to the two feeds, and in addition there might be a phase offset introduced by the power

splitter and directional couplers. As depicted by the thick lines in Figure 4, this component of

phase offset depends on mechanical structures and should be stable and constant with time.

2. The phase difference introduced by the different cable lengths DX and DY , which can be

time-variable because the cables are long and environmental conditions (temperature) come

into play, as mentioned above. The relative phase delay ∆θ from the cable length difference

∆D = DY −DX varies linearly with frequency:

d∆θ

df
=

2π ∆D

vph
, (7)

where vph is the phase velocity in the cable. Typical values at both Arecibo and GBT are a

few tenths of a radian per MHz, which leads to ∆D ∼ several meters.

3. The phase difference introduced by components in the X and Y signal paths. Some of these

are active circuit elements and can change with time.

4. At some point in the receiver chain one always has a band-limiting filter. Frequency-dependent

gains automatically introduce phase delays, the minimum values of which can be calculated

from the Kramers-Kronig relations. The exact formula for electrical circuits is equation (2)

of Bode (1940)5:

[Phase Shift](fc) = − 1

π

∫ ∞
−∞

dG
du

ln

[
coth

(
|u|
2

)]
du , (8)

where G(u) is the logarithmic filter power gain in nepers, u = ln
(
ν
νc

)
, and ν is frequency.

The weighting function ln
[
coth

(
|u|
2

)]
is sharply peaked at f = fc, so a good approximation

5You would miss a lot if you pass up the opportunity to read this paper, particularly the first six pages. Go to

http://www.alcatel-lucent.com/bstj/ .

http://www.alcatel-lucent.com/bstj/
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eliminates the integral and uses only the local derivative (equation 22 of O’Donnell, Jaynes,

& Miller 1981)

φ(νc) = −π
2

dG(u)

du

∣∣∣∣
u=0

. (9)

Thus, a bandpass filter centered at fcntr with width ∆f introduces a phase shift proportional

to fcntr
∆f : sharp, narrow filters produce more phase shift.

If the filters in the two polarizations are not perfectly matched, a frequency-dependent phase

difference between the two polarization channels ensues. This can be particularly serious

when the filters have significant gain changes within the usable portion of the band, and

in real life these phase changes are, in fact, significant. For example, the ‘radar backend’

(Margot 2021) baseband low-pass filters at the GBT have a roughly Gaussian shape and the

delay of a single filter near the half-power point, relative to that at the center frequency, is

∼ 600◦ (!). Those filters are imperfectly matched and, as a result, produce a relative phase

delay ∆φ ∼ 150◦.

Arecibo Interim Correlator Filters
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Fig. 5.— Filter shapes and their theoretical phase delays for the Arecibo Interim Correlator (left panel) and the

GBT Spectral Processor (right panel).

Our work at Arecibo has been done with the interim correlator, for which the baseband low-

pass filters are digitally defined and are remarkably flat; Figure 5, left-hand panel, shows the



– 23 –

positive-frequency half of the X and Y signal-path filters for bandwidth 12.5 MHz (cutoff

frequency 6.25 MHz). Phase shifts occur only at the end, where the response of filters drops

precipitously.

In contrast, the GBT Spectral Processor filters are far from flat. For example, the 0.625

MHz bandwidth filter is shown in the right-hand panel of Figure 5. The phase difference

between the X and Y signal paths is the cyan line in the bottom half, and there is a clear

frequency-dependent phase delay difference.

5. STAGE 2 BASICS: DERIVING THE MUELLER MATRIX

5.1. Basic Definitions of Reference Frames

We need to turn the four measured intensity- and phase-calibrated self- and cross-products

into the four Stokes parameters. The four measured Stokes parameters depend not only on on the

polarization properties of the source, but also the details of the telescope, its mounting, and the

electronics. Our final result needs to be the Stokes parameters of the source, with the telescope

details removed, and they must be expressed according to the IAU definitions, §2: (1) the position

angle of linear polarization increases from North towards the East, and (2) the sign of the circularly

polarized Stokes V is correct. The measured Stokes parameters do not necessarily follow any of

these conventions.

We specify the two reference frames of our Stokes parameters:

1. The subscripts meas and tel refer to the measured Stokes parameters, which are in the telescope

reference frame. In particular, Stel is the set of 4 Stokes parameters of the source that is

derived from the measured Stokes parameters.

2. Subscripts IAU and src-IAU refer to the IAU reference frame. SIAU represents the source

Stokes parameters as defined by the IAU.

We use Mueller matrices to convert from one frame to another, using subscripts to indicate

the frames. For example, the Mueller matrix Mtel−IAU converts from the telescope frame to the

IAU frame (more detail below).

5.2. Deriving the Measured Stokes Parameters from the Measured Voltage

Products

We convert the 4 measured voltage products to the measured Stokes parameters by applying

a series of transformations. These transformations are best accomplished by considering each set
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of four quantities to be a 4-vector and using matrix methods. We write the four source Stokes

parameters in the telescope frame as the Stokes vector Stel

Stel =


Itel
Qtel
Utel
Vtel

 . (10)

Similarly, the four measured correlator outputs are

1. For native linear feeds:

Smeas =


Imeas

Qmeas

Umeas

Vmeas

 =


XX + YY

XX − YY
2XY

±2YX

 . (11)

2. For native circular feeds:

Smeas =


Imeas

Qmeas

Umeas

Vmeas

 =


RR+ LL

±2LR

2RL

RR− LL

 . (12)

The sign ambiguities above arise because one can’t be sure that the cables carrying the two po-

larizations are not interchanged, nor how the native polarizations are treated inside the correlator.

Resolving these sign ambiguities is part of the calibration process.

The transformation matrices are called Mueller matrices. We can regard a Mueller matrix

as the transfer function associated with an individual device or operation, or a set of them; the

Mueller matrix for the set is the matrix product of the matrices for the individual components. So

we have

Smeas = Mtel−meas · Stel . (13)

Mtel−meas is the product of 2 individual Mueller matrices associated with the 2 devices that

the source’s electromagnetic radiation sequentially encounters on its voyage from the source to the

correlator input: MρX , the matrix involving the telescope pointing, and MRX, the matrix involving

the receiving system:

Mtel−meas = MRX · MρX . (14)
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5.3. MρX

MρX has one parameter, ρX , which is the position angle on the celestial sphere of the X-

polarization probe.

MρX =


1 0 0 0

0 cos 2ρX sin 2ρX 0

0 − sin 2ρX cos 2ρX 0

0 0 0 1

 . (15)

The central 2 × 2 submatrix is, of course, nothing but a rotation matrix. For an alt-az mounted

telescope such as Arecibo, ρX = χ, the parallactic angle, plus an offset angle that depends on how

the feed is mechanically mounted.

5.4. MRX

MRX has six parameters, briefly summarized below; one of these (χ in 4 below) is fixed to zero.

For a detailed discussion, see Heiles et al. (2001b). The first three are the most important because

they describe zeroth-order effects. The others describe imperfections such as nonorthogonality in

the polarizations, so for high-quality feeds (the typical case) they are very small. The parameters,

listed in order of their typical importance in real life, are:

1. ∆G is the error in relative intensity calibration of the two polarization channels. It results

from an error in the relative cal values (TcalA, TcalB). Our expansion currently takes terms

in ∆G to first order only, so if the relative cal intensities are significantly incorrect then the

other parameters will be affected. The relative cal values should be modified to make ∆G = 0,

keeping their sum the same. To accomplish this, make TcalX,modified = TcalX
(
1− ∆G

2

)
and

TcalY,modified = TcalY
(
1 + ∆G

2

)
.

2. ψ is the phase difference between the cal and the incoming radiation from the sky. It redis-

tributes power between (U, V ) for a native linear feed and between (Q,U) for a native circular

feed. For these two cases:

(a) Native linear polarization. If all of the (X, Y) cable pairs in Figure 4 have identical

lengths and the r.f. paths through the feed are identical for the two polarizations, then

∆θ = 0. If the cable lengths differ, then ∆θ 6= 0. Moreover, in this case we expect

∆θ ∝ ν, where ν is the r.f. frequency.

(b) Native circular polarization. In this case, the phase difference ∆θ determines the angle

of linear polarization for Stokes Q and U . This is indeterminant from our least-squares

fit for MRX. Accordingly, for native circular we force ψ = 0 and don’t fit for it; we

use Mtel−IAU to empirically obtain the correct position angle of linear polarization.
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Because ψ depends linearly on frequency, so too will this correction to the position angle

for native circular.

3. α is a measure of the voltage ratio of the polarization ellipse produced when the feed observes

pure linear polarization. Generally, the electric vector traces an ellipse with time; tanα is the

ratio of major and minor axes of the voltage ellipse. Thus, tan2 α is the ratio of the powers. If

a source having fractional linear polarization Psrc =
√
Q2
src + U2

src is observed with a native

circular feed that has α = π
4 + δα, with δα � 1, then the measured Stokes V will change

sinusoidally with 2PAaz and have peak-to-peak amplitude 4δα. α might also be a function

of frequency, particularly for native circular.

4. χ is the relative phase of the two voltages specified by α. Our analysis assumes χ = 90◦.

This hardwired specification is compensated for by ∆ρ (see §6 below), so this incurs no loss

of generality.

5. ε is a measure of imperfection of the feed in producing nonorthogonal polarizations (false

correlations in the two correlated outputs). Our expansion takes ε to first order only. The only

astronomical effect of nonzero ε is to contaminate the polarized Stokes parameters (Q,U, V ) by

coupling Stokes I into them at level ∼ 2ε; the exact coupling depends on the other parameters.

For weakly polarized sources, this produces false polarization; for strongly polarized sources

such as pulsars, it also produces incorrect Stokes I. If ε is large enough so that its first-order

approximation is insufficient, ε itself needs to be modified appropriately (consult Heiles et al.

(2001) for details).

6. φ is the phase angle at which the voltage coupling ε occurs. It works with ε to couple I with

(Q,U, V ).

Putting all these together, we follow Heiles et al. 2001b): We set χ = 90◦, we ignore second

order terms in the imperfection amplitudes (ε,∆G), and we retain all orders in α. This gives

MRX =


1 (−2ε sinφ sin 2α+ ∆G

2 cos 2α) 2ε cosφ (2ε sinφ cos 2α+ ∆G
2 sin 2α)

∆G
2 cos 2α 0 sin 2α

2ε cos(φ+ ψ) sin 2α sinψ cosψ − cos 2α sinψ

2ε sin(φ+ ψ) − sin 2α cosψ sinψ cos 2α cosψ

 .(16)

The terms in the top row make I 6= 1 for a polarized source. If one derives fractional polarization,

for example Q/I, then it will be in error by amounts comparable to [(ε,∆G)× (Q,U, V )]. For the

frequent case of a weakly polarized source, these products are second order and therefore are of no

concern. However, for a strongly polarized source such as a pulsar or OH maser, these terms are

first order.
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5.5. The relationship between the measured phase ∆θ and the MRX parameter ψ

We need to clarify the relationship between the MRX parameter ψ and the phase differences

on Figure 4. For this discussion, we consider quantities like DX on Figure 4 as phase delays,

which occur not only because of cable lengths but also because of phase delays in components such

as amplifiers and bandpass-defining filters. Each quantity affects both the X and Y polarization

channels and what matters are the relative phase delays:

1. ∆S, the relative phase delay between the X and Y polarizations of the astronomical Source;

2. ∆F , the relative phase delay within the Feed itself;

3. ∆L = (LX −LY ), where L is the cable Length between the feed and the input to the first RF

amplifier expressed as a relative phase delay. In a well-engineered and carefully constructed

feed, ∆L is small;

4. ∆D = (DX −DY ), where D is the phase delay between the input to the first amplifier and

the input to the correlator. In our experience at Arecibo, GBT, and FAST, ∆D is of order 1

meter;

5. ∆T = (TX − TY ), where T is the cable length between the TCAL power splitter and the

input to the first RF amplifier. For simplicity, we make the assumption that the two outputs

from the power splitter have zero relative phase delay. In a well-engineered and carefully

constructed feed, ∆T is small;

When we measure the noise diode deflection TCAL, the signal goes through T and D, so the

relative phase is

∆θmeas,TCAL = ∆T + ∆D (17)

When we measure the source deflection, the signal goes through F, L, and D, so the reflative phase

is

∆θmeas,SRC = ∆S + ∆F + ∆L+ ∆D (18)

We phase-correct all measured cross products by subtractiing the TCAL phase, so

∆θcorr,TCAL = ∆θmeas,TCAL − (∆T + ∆D) = 0 (19)

and

∆θcorr,SRC = ∆θmeas,SRC − (∆T + ∆D) = ∆S + [∆F + ∆L−∆T ] (20)

The three quantities in square brackets are all in the thick-line portion of Figure 4 and add to the

relative source phase. To recover the source phase, they need to be subtracted from the measured

phase ∆θmeas,SRC . Thus, they are the same as the MRX parameter ψ:

ψ = [∆F + ∆L−∆T ] (21)
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We have adopted the following procedure for phase calibration. In equation 17, ∆D totally

dominates on the right-hand side. Our discussion of equation 7 shows that the relative phase changes

linearly with frequency, so we least-squares fit ∆θmeas,TCAL to a linear function of frequency and

subtract this fit from all measured cross-product pairs. With this, the only instrumental components

left in the measured cross products is ψ, which is removed when we apply the Mueller matrix

corrections.

6. USING OBSERVATIONS AND MUELLER MATRICES TO DERIVE THE

THE STOKES PARAMETERS OF A SOURCE

§4 shows how to convert the voltage products to measured Stokes parameters Smeas. To convert

measured Stokes parameters to source polarization properties, i.e. to obtain Stel from Smeas, we

apply the inverse matrix to equation 13:

Stel = M−1
tel−meas · Smeas . (22)

To go the final step and obtain the source Stokes parameters in the IAU frame:

SIAU = Mtel−IAU · Stel , (23)

or

SIAU = Mtel−IAU ·M−1
tel−meas · Smeas . (24)

Mtel−IAU has 2 parameters:

1. ∆ρ is the angle by which the derived position angles must be rotated to conform with the

conventional astronomical definition. In principle, ∆ρ depends only on the angle of the

mechanically-mounted feed and is a known quantity; in practice, we check it out empirically.

2. Vfctr, the factor (equal to ±1) to convert the derived Stokes V to the astronomically-defined

one.

Mtel−IAU =


1 0 0 0

0 cos 2∆ρ sin 2∆ρ 0

0 − sin 2∆ρ cos 2∆ρ 0

0 0 0 Vfctr

 . (25)

7. USING OBSERVATIONS TO DERIVE THE MUELLER MATRIX

PARAMETERS

To derive the Mueller matrix coefficients from observations one needs to observe standard

polarization calibration sources such as 3C286. Usually there are two kinds of observations:
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1. Most commonly, one is using an alt-az mounted telescope, for which the angle ρX = χ,

the parallactic angle, and one observes a single source, such as the gold-standard calibrator

3C286, over a large range of parallactic angles. Closely related is the case of multiple sources,

all having the same set of parallactic angles; in real life, this is useful for the case of polarized

masers with multiple spectral components, each with its own unique polarization properties.

2. Alternatively, one observes a set of different calibration sources, each with its own ρX or its

own set of ρX angles. This method is more cumbersome, but is the only option for equatorially

mounted telescopes like GALT and for the unique case of FAST.

We discuss the least-squares fitting for the two cases separately, because the approaches are

totally different. The former technique in (1) above is the classical one, because of the prevalence

of alt-az mounted telescopes and the ease with which one samples a range of ρX .

7.1. Fitting for the Classical (Alt-Az Mount) Case

Classically, we evaluate the Mueller matrix parameters in equation 16 using observations of

a polarized calibration source tracked over a wide range of parallactic angle χ. As a bonus, the

least-squares fit can simultaneously obtain not only the Mueller matrix parameters but also the

Stokes parameters of the source. The source is described by Stel and the Mueller matrix for the

radiation entering the feed by MρX . The full Mueller matrix is Mtel−meas = MRX ·MρX . The

product of this matrix with Stel results in a set of of four equations, one for each element of the

observed Stel vector. Expressed in terms of matrices, these equations are
Imeas
Qmeas
Umeas
Vmeas

 = MRX ·MρX ·


Itel
Qtel
Utel
Vtel

 . (26)

In practice, we cannot reliably measure the ρ dependence of Imeas because it is rendered inaccurate

by small gain errors, either from the electronics or the zenith-angle gain dependence of the telescope.

Thus, in practice we use fractional correlator outputs and fractional source polarization.

S′meas =
Smeas

Imeas
(27)

and

S′tel =
Stel

Itel
(28)

We also take Imeas = Itel instead of Imeas ≈ Itel. Note that the division by Imeas produces errors in

the elements of S′meas, but these errors are second order because they are products of ∆G and/or

ε with quantities such as Qtel that are already first order. Our whole treatment neglects second

order products, so we can neglect these errors.
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We now rewrite equation 26, expressing MRX in the gory detail of all its 16 elements. To save

space, we omit the subscript RX from each individual matrix element, i.e. we write mQU instead

of mRX,QU : 
1

Q′meas
U ′meas
V ′meas

 =


mII mIQ mIU mIV

mQI mQQ mQU mQV

mUI mUQ mUU mUV

mV I mV Q mV U mV V

 · MρX ·


1

Q′tel
U ′tel
V ′tel

 . (29)

This matrix equation produces four ordinary equations in which the the four elements of Smeas

are expressed as complicated functions of (1) the 5 parameters defined above in §5.4, (2) the 3

fractional source Stokes parameters, and (3) the angle ρX . We have N sets of 4 equations like

this, each for a different value of the parallactic angle χ. Given the N observed values of Smeas
and χ, we could solve this set of equations using least squares. However, this approach would be

complicated and cumbersome because the known values of parallactic angle χ, together with the 8

unknown parameters, are buried together within the 4N equations.

There is a simpler formulation. All of the information lies in the parallactic-angle dependence

of the measured Stokes parameters S′meas. Moreover, the functional dependences of Q′meas, U
′
meas,

V ′meas upon χ involve only the functions cos(2χ) and sin(2χ). Accordingly, it is straightforward to

regroup and express Smeas in terms of the functions of the parallactic angle:[
Q′meas
U ′meas
V ′meas

]
=

[
(mQI + V ′telmQV ) (Q′telmQQ + U ′telmQU ) (−Q′telmQU + U ′telmQQ)

(mUI + V ′telmUV ) (Q′telmUQ + U ′telmUU ) (−Q′telmUU + U ′telmUQ)

(mV I + V ′telmV V ) (Q′telmV Q + U ′telmV U ) (−Q′telmV U + U ′telmV Q)

]
·

[
1

cos(2ρ)

sin(2ρ)

]
. (30)

This provides 3 equations, one for each measured Stokes parameter; for example,

Q′meas = AQ′ +BQ′ cos 2ρ+ CQ′ sin 2ρ . (31)

The coefficients (A,B,C) in equation 31 are expressed in the three columns of equation 30; for

example, BQ′ = (Q′telmIQ +U ′telmIU ). We solve for (A,B,C) in each of the 3 equations separately.

We refer to the set of these three separate fits as ‘the first least-squares fit’. Figure 6 shows the

data and the fits for a real-life example. One aspect of this solution requires discussion, which we

provide in §7.2.

With three coefficients for each of the three observed Stokes parameters we have a total of 9

coefficients. These coefficients are complicated functions of the 5 parameters (α, ε, φ,∆G,ψ) and,

also, the three source Stokes parameters (Qtel, Utel, Vtel). The second least-squares fit uses the 9

coefficients as the input data for a nonlinear least squares fit to determine the 5 Mueller matrix

coefficients and, if desired, the 3 fractional Stokes parameters of the source.
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Fig. 6.— Left, a successful fit for channel 3867 of W49—the guessed value for α was close enough. Right panel,

Not a good enough guess!

7.2. A Detail of the least-squares fit to equation 31

Equation 31 fits the parallactic-angle dependence of the fractional Stokes parameters, e.g.

Q′meas = Qmeas/Imeas, making the implicit assumption that the uncertainty in Imeas is small

enough that the uncertainty in Q′meas is dominated by the uncertainty in Qmeas, i.e. that σQ′meas =

σQmeas/Imeas. This is not necessarily the case, particularly for the case of high fractional polariza-

tion.

Fitting for (A,B,C) using equations of condition Qmeas/Imeas = A+B cos(2PA)+C sin(2PA)

is bad practice in this case because points with abnormally low Imeas caused by noise receive

improperly large weights in the fit. The solution to this problem is to fit Qmeas = Imeas(A +

B cos(2PA) + C sin(2PA)). This fix regards Imeas as a known quantity having no noise, so its

noise becomes embedded in the uncertainties of the derived quantities (A,B,C). But the improper

weighting of noise-induced abnormally small values of Imeas is gone.

Our IDL procedure onoffs to pacoeffs.pro incorporates this fix. An older version, stripfit to pacoeffs.pro,

does not. Unless Stokes I is noisy, both give almost identical results.
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7.3. Fitting for Telescopes with Limited Range of ρX

For telescopes with limited range of ρX , we must replace the wide range of parallactic angle

for a single source by using a set of sources having a wide range of polarization position angle. For

the least-squares fit we would use the more cumbersome approach, mentioned above, and formulate

equations of condition based on equations 29.

8. THE SUBTLETIES OF THE NONLINEAR FIT FOR THE MUELLER

MATRIX PARAMETERS

8.1. Too many unknowns in the fits

The second fit for alt-az mounted telescopes in §7.1 uses the 9 outputs of the first fit (equa-

tion 31) as inputs to derive the Mueller matrix parameters. For the second fit, the full suite of

unknowns comprises 8: 5 Mueller matrix parameters (∆G, ψ, α, ε, φ); and 3 source parameters

( Qtel, Utel, Vtel). If you solve for all 8 parameters, there is only one degree of freedom! This can

make the solution unstable because of covariances. You can bypass this problem by reducing the

number of unknowns. There are two straightforward approaches:

1. If you know any of the 3 source polarization parameters you can exclude them from the fit.

This is particularly useful for continuum polarization calibrators such as 3C286, because they

have V = 0; excluding only Vtel from the fit generally produces excellent fit results.

2. If you think the feed is good, with no crosscoupling between the feed outputs, then exclude ε

and φ from the fit. And, especially for native linear feeds, exclude α also; setting it to zero is

usually an excellent approximation. For native circular, however, you may need to include α

(using a guessed value of π/4) because native circular feeds often have a substantial response

to linear polarization—which is often significantly frequency-dependent.

8.2. Nonlinear Least-Square fits require reasonably good initial guesses

The two panels of Figure 6 show the fitting results for an elliptically-polarized OH maser

component in W49, for two different guesses for α. On each figure, the (XX − YY ) curve is in red,

with crosses); the XY curve is in green, with diamonds); and the YX curve is in blue, with squares.

These curves and their points are the first fit above. The asterisks, which are not connected by

lines, come from the second fit above.

Figure 6, left panel, is a successful second fit because the asterisks lie near their associated

curves from the first fit. In contrast, Figure 6, left panel, shows an unsuccessful fit because the

asterisks don’t lie near first-fit curves. This is one of those cases where the fit converged not to a
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minimum of the sum-of-squares Σσ2 of the residuals, but a maximum! This can happen because

the least-squares fit technique finds solutions for which the first derivative of Σσ2 with respect to

the parameters is zero—whether or not this represents a minimum or a maximum.

The former second fit is successful because the guessed value of α, used as input for the fit,

is close enough to the true value; the latter, not. By experimenting, we found that obtaining a

successful fit required the guess for α to be within ±1.06× π/2 radians of its correct value (which

is 2.25 radians). Whether or not this range for success is general is unknown. The message: in all

nonlinear fits, look at the results and if they are unsatisfactory, try different input guesses!

8.3. Commentary on some Fundamentals

Nonlinear least squares fitting is often plagued by multiple minima, and the present case of

the second fit is no exception. Heiles et al. (2001b) discuss these in some detail; here we only

summarize some of the degeneracies.

1. For native linear polarization, one cannot distinguish between the two cases (α,ψ) = (0◦, ψ0)

and (α,ψ) = (90◦, ψ0 + 180◦). For these two cases, the signs of (Q,U) change, which is

equivalent to rotating the feed by 90◦. For a conventional linear feed, loosely described as

two E-field probes in a circular waveguide, the combination (α,ψ) = (90◦, 180◦) is physically

unreasonable.

2. For native circular polarization, the position angle of the source 2PAsrc and ψ are inextricably

connected. We can determine only their sum (for α = 45◦) or their difference. In particular,

the two solutions α = 45◦, α = −45◦ are degenerate; the two solutions have different signs

for Qsrc, thereby rotating the derived PAsrc by 90◦).

The physical interpretation of this degeneracy is straightforward: for a pure circular feed,

the phase of a linearly polarized source rotates with 2ρ and its absolute value depends both

on the system phase ∆θ and the source position angle PAsrc. There is no substitute for an

independent calibration of the linearly polarized position angle, either with a test radiator or

with a source of known polarization.

3. ε is the quadrature sum of the ρ-independent portions of the two correlated outputs (AB,BA).

This power is distributed between those outputs according to (φ+ψ). In the near-linear case,

ψ can change by 180◦ by changing the choice for α, and this also produces a 180◦ change in

φ.

4. Consider a high-quality standard linearly polarized feed for which all X and Y cables have

equal lengths. Such a feed has α ≈ 0◦ and the equal-length cables mean that ψ ≈ 0◦. However,

the solution yields ψ ≈ 180◦ if the sign of (XX − YY ) is incorrect, which can easily happen

if one interchanges cables carrying the two polarizations; this is equivalent to reversing the

handedness of the position angle.
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5. Finally, at low frequencies, one must include the effects of terrestrial ionospheric Faraday

rotation, which is time variable at a level ∼ 1 rad m−2.

9. USING RHSTK 2021 SOFTWARE—STAGE 1

9.1. Flagging Bad Data

Always begin by purging your dataset of bad data using visual inspection. The flagging process

for all-Stokes data is best performed by looking at all four Stokes parameters simultaneously,

because interference or bad data might show up in only one of the four auto- and cross-product

spectra. We constructed a procedure that displays a set of all four Stokes spectra as four grayscale

images. This makes it easy to examine all four simultaneously. It is always our philosophy that

even if only one of the Stokes parameters is suspect, all four should be discarded.

This program is called flag rfi.pro. It is best run with a large screen monitor because

the grayscale images are displayed side-by-side.6 It can be employed at any stage in the process:

uncalibrated auto- and cross-product spectra, calibrated ones, Mueller-uncorrected Stokes spectra,

Mueller-corrected Stokes spectra.

9.2. Stage 1 Basics

For the purposes of description, we implicitly assume native linear polarization. We therefore

designate self-products by XX and Y Y and cross-products by XY and Y X, as described in §5.2.

After phase and amplitude calibration of the self- and cross-products, the Stokes parameters are

given by equation 11. If the system has native circular polarization, then almost everything in this

memo remains the same except for some obvious changes, such as (1) X and Y should be replaced

by R and L in your mind’s eye, and (2) the Stokes parameters are given by equation 12 instead of

equation 11.

We assume you have ‘signal’ and ‘reference’ spectra (often called ‘SRCON’ and ‘SRCOFF’,

or ‘SIG’ and ‘REF’). It’s the source deflection—SIG–REF—that matters. For continuum observa-

tions, the SRCON and SRCOFF spectra are nearly always position differences. For spectral line

observations, they can be either position differences or frequency differences. We also assume that

6We had a difficult time making flag rfi.pro work on a MacBook Pro running OS X Lion. First, we need to tell

OS X to allow IDL windows to get focus when clicked, so at a command line, type defaults write com.apple.x11

wm click through -bool true (this only needs to be done once ever). Then, if using Xquartz X11, go to Preferences

and select “Emulate three button mouse” in the Input tab; in the Windows tab, select “Click-through Inactive

Windows”. These latter steps allow you to hold Option while clicking to emulate a middle mouse click, or Command

while clicking to emulate a right mouse click. If using some other X11, there should be similar options in the

Preferences for that version of X11.
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you have calibration data: DIODEON and DIODEOFF spectra. As for the source, it’s the Diode

deflection that matters.

The digital spectrometer produces uncalibrated self- and cross-products (spectra), which need

to be turned into calibrated spectra. This is done with the Stage 1 software. There are three

essential calibration quantities:

1. A representative value for CpK, which is an average over a portion of the bandpass specified

by the spectral channels to include.

2. The linear relative phase XY gradient.7

3. The bandpass shape. After correcting for the bandpass shape, spectra should be flat unless

there are spectral features.

9.3. Obtaining Counts per Kelvin (CpK) and relative phase between X and Y

init cal.pro uses two IDL procedures to derive items 1 and 2 above, the system gain and

relative phase:

1. intensitycal self.pro derives the correlator counts per Kelvin (CpK) averaged over a set of

spectral channels (the array gainchnls) from the Diode deflection for a single self-product,

e.g. for XX. This CpK factor is what’s usually considered as the ‘system gain’. You must

invoke this separately for XX and Y Y .

2. phasecal cross.pro derives the relative phase between XY and YX diode deflections, which

varies linearly with frequency as represented by the parameters zero, slope, and the array

of frequencies of the spectral channels. These frequencies can be the RF or baseband (BB)

frequencies. In the past we used BB, but we now recommend using RF frequencies because

of the wide bandwidths of today’s digital spectrometers.

We least-squares fit the cross-product spectra for the slope and phase of the diode deflection.

This is a nonlinear fit, so you must enter a reasonably accurate guessed value for the slope

(dpdf). If your guess is too far off the fit will not converge to the correct value, so you need

to plot the results and check! To check, use phaseplot 08.pro.

9.4. Applying the System Gain and Phase to produce calibrated voltage products

We need to apply the above-derived system gain and phase response to the ONSRC/OFFSRC

data to produce intensity- and phase-calibrated self- and cross-product spectra that are bandpass-

7We have not yet implemented the filter phase correction of §4.3, item (4).
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corrected. We use the following three procedures.

1. self uncal to cal derives intensity-calibrated and bandpass-corrected source deflection spec-

tra, by applying the above-determined CpK to uncalibrated spectra. The input spectra are

arrays of uncalibrated SRCON and SRCOFF spectra, with dimensions

[nchnls, nONspectra] and [nchnls, nOFFspectra].

The SRCON and SRCOFF spectra can be paired, or the SRCOFFs can be averaged or

medianed. Some people have the erroneous impression that averaging the SRCOFFs produces

less noise than using paired SRCONs and SRCOFFs, because then each SRCON is divided

by a much less noisy SRCOFF spectrum. However, when you average all the data, this isn’t

true: the noise in the average is the same (to first order). Generally, using paired SRCONs

and SRCOFFs is better, because the SRCOFF spectra might change significantly with time

for various and sundry reasons. Hence, we recommend using paired SRCONs and SRCOFFs.

You do this by setting the keyword mean med off = 0 .

The calibration that this procedure performs includes (1) converting correlator counts to

Kelvins, which is done with CpK; and (2) dividing by the bandpass. You must invoke this

procedure separately for XX and Y Y . If you are doing in-band frequency switching, then

for each spectral path (like XX) you must invoke this twice, once with (LO1, LO0) as the

(SRCON, SRCOFF), and again with (LO0, LO1) as the (SRCON, SRCOFF).

2. cross uncal to cal derives cal cross, the intensity-calibrated and bandpass-corrected spec-

tra for a cross-product, e.g. for XY . The inputs are the array of uncalibrated XY spectra,

gainchnls, the XX and Y Y CpK (from init cal.pro), and the XX and Y Y bandpasses

(from self uncal to cal). The process of calibration includes (1) converting correlator

counts to Kelvins, which is done with the geometric mean of the XX and Y Y values of CpK;

and (2) dividing by the geometric mean of the XX and Y Y bandpasses.

The calibrated cross spectra cal cross are not source-deflection spectra. Rather, they are the

phase-corrected versions of the input cross-product spectra, which are otherwise uncorrected.

3. phasecorr xyyx removes the linear phase gradient determined from the diode deflection from

each individual pair of the original XY and Y X spectra. Inputs are the set of all phase-

uncorrected XY and Y X spectra, the frequency array, and the derived zero and slope from

phasecal cross.pro; the outputs are are the set of all phase-corrected XY , Y X products.

See §5.5.

4. products to stokes 2021.pro creates the Smeas Stokes parameters from the calibrated volt-

age products using equation 11.

We use the run-time procedure stg1.idlprc.pro to perform all the necessary calculations for

Stage 1; see §12.
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10. USING RHSTK 2021 SOFTWARE—STAGE 2: DERIVING MRX AND

APPLYING THE MUELLER MATRICES

Stage 2 uses the output from Stage 1. There are two actions we can take: (1) use observations

of a linearly polarized source to derive MRX; and use observations of any source to apply the Mueller

matrix transformations to obtain the polarization properties of that source. Given observations of

polarized calibration sources, we have 3 IDL procedures that fit the data to derive the Mueller

matrix elements. They are useful for 3 different types of observing.

10.1. Deriving the Mueller matrix coefficients using mmfit 2016.pro or

mmfit 2016 chisq.pro

Given a single polarized source observed over a range of parallactic angles, this least squares

fits the data to provide the Mueller matrix parameters. The two versions are identical except one

does a least-squares fit and the other a chi-square fit; the latter automatically accounts for the

increased noise in Stokes Q over Stokes U. This is our classic fitting procedure, modified to allow

nonzero Stokes V. It is intended for the very common case where you have well-sampled parallactic

angle coverage of a single polarization calibration standard source. As of Aug2016, this nonlinear fit

is done with mmfit 2016.pro or mmfit 2016 chisq.pro. The major improvements over previous

versions are (1) we now include the possibility of a nonzero Stokes V for the source(s) being fit,

which is necessary when using OH masers and pulsars for Mueller matrix calibration, and (2) we

allow you to exclude any combination of parameters from the fit, which is handy for high-quality

feeds and sparse measurements.

The input data consist of the ρ dependences of each of the 3 observed fractional Stokes

parameters, which are expressed by 3 coefficients in equation 31 for each observed Stokes pa-

rameter. The coefficients (A,B,C) are fitted to the observed fractional Stokes parameters by

onoffs to pacoeffs. Thus, there are 9 input numbers (3 sets of (A,B,C), one for each of the

three fractional Stokes parameters).

These 9 coefficients then serve as the inputs to the nonlinear fit for the Mueller matrix pa-

rameters and source Stokes parameters. There are up to 8 parameters to fit: 5 Mueller matrix

parameters and 3 source Stokes parameters (Q′, U ′, V ′). You can choose any combination of the 8

parameters to fit. For example, if you know the source Stokes parameters, you specify that they

not be fit. Because the number of fitting parameters can be as high as 8, and there are only 9

inputs, the more parameters you can fix, the better. As we discussed in §8.1, when you fit for all

8 parameters there is only 1 degree of freedom, and the degeneracies (covariances) might be strong

and the fit can become unstable. It is probably best that you do not include all 8 parameters in

the fit. In our classic fits, we forced the Stokes V parameter to equal zero, because our calibration

sources were classic continuum sources with very little V; this worked well. Now, however, we might

want to use OH masers or pulsars, which can have strong Stokes V.
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The nonlinear least squares fit requires initial guesses for the parameters to be solved for. It is

OK to set the initial guesses for the source Stokes parameters to zero. However, if you set the initial

guesses for 5 the Mueller matrix parameters to zero and fit for all 8 parameters, the fit will not

properly converge. The initial guesses for the 5 matrix parameters need to depart a bit from zero;

our default is 0.001. These are generated by the program mm coeffs in setup.pro. Alternatively,

you can exclude one or more parameters from the fit, setting its value by hand equal to a constant.

With nonzero V, you should eliminate other parameters from the fit. The most important

Mueller matrix parameters are ∆G and ψ, and you always need to solve for them. Because a

reasonably well-engineered feed will have small imperfections, the parameters that express these

imperfections can be eliminated from the fit. These parameters are ε and its associated phase angle

φ; and α and its associated angle χ. Almost always, ε is the least important parameter because it

is the smallest. For any native polarization you can set ε = 0 and its angle to anything and not

solve for them. This should be enough to obtain a good fit. You can reduce covariance problems

further by fixing α: for native dual linear you set α = 0◦ and χ = 90◦; for dual circular, α = 45◦

and χ = 90◦. The program never allows a fit for χ, which should always be set to 90◦.

We use the run-time procedure stg2.idlprc.pro or stg2 2016 chisq.pro to perform all the

necessary calculations for Stage 2, which uses mmfit 2016.pro or mmfit 2016 chisq.pro; see §12.

10.1.1. mmfit 2016 multiplesources.pro

This is like mmfit 2016.pro, but treats the case when you have observations of more than one

source and want to derive Mueller matrix parameters by including the data from all those sources.

You can also obtain the Stokes parameters for all, or any combination of, the sources.

The most important use for this is when you have well-sampled ρ coverage of a polarized OH

maser, e.g. W49, for which you can regard each spectral channel as an independent source. The

program then provides not only the Mueller matrix parameters, but also the 3 Stokes parameter

spectra. For each source (or spectral channel), the input data consist of the ρ dependence of each of

the 3 observed fractional Stokes parameters, which is expressed by 3 parameters for each observed

Stokes parameter—a total of 9 data points for each source. The total number of input datapoints

is then 9Nsrc.

If you don’t know the source polarizations, then you are fitting for 5 Mueller matrix elements

plus 3 Stokes parameters per source. The total number of fitting parameters is 5 + 3Nsrc. The

number of degrees of freedom is the difference between these two numbers, which is 6Nsrc − 5.

So having only just two sources instead of one has a big effect because it changes the number of

degrees of freedom from 1 to 7. Nevertheless, if the feed is good you still might want to not fit for

ε and φ, and maybe also α. We have little experience for real-life data, so explore.

A caution for large Nsrc (e.g., hundreds or thousands of channels in a single spectrum): The
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number of parameters being solved for is 5 + 3Nsrc. Suppose Nsrc = 1000, i.e. you have a three

1000-channel spectra (one for each fractional Stokes parameter)—so 3Nsrc = 3000. The covariance

matrix is then a 3005 x 3005 matrix, and the program has to evaluate its inverse. The computer

time required for matrix inversion goes as (3Nsrc + 5)3. !!CUBED!! When Nsrc exceeds a few

hundred, the time can become excessive. You can deal with this in a two-step fashion: step 1,

rebin the spectra so that you have fewer channels, and do the fit at lower spectral resolution; step

2, apply the derived Mueller matrix to the spectra with full resolution.

10.1.2. mparamsfit.pro

This program determines Mueller matrix parameters when you have observations of 2 or more

sources and little or no parallactic angle coverage. You have to know the polarizations of the

observed sources. For example, if you have observations of several continuum polarization standard

calibrators, each at 1 or more parallactic angles, this will provide the Mueller matrix parameters.

But it cannot provide the source Stokes parameters; you have to know them and provide them as

inputs.

The FAST and GALT telescopes need this program because of their limited or zero coverage

in parallactic angle. The sources can be continuum polarization calibrators or a known OH maser

spectrum; the latter is especially convenient because you don’t have to do position switching.

For each observed source, the input data are its 3 observed fractional polarized Stokes param-

eters, so the number of input datapoints is 3Nsrc. There are five Mueller matrix parameters to

solve for, so with 2 sources there is 1 degree of freedom (but see paragraphs below). As in §8.1,

this might not be enough, so you might need to exclude ε and φ, and maybe also α, from the fit.

The more sources, the better; the fewer parameters to solve for, the better.

10.2. Applying the Mueller Matrix

When you observe a source with the intent of measuring its polarization, you want to convert

Smeas to either the telescope frame (Stel) or the IAU frame (SIAU). This is done with mmcorr.pro,

which uses equation 13 to convert the measured ones to the astronomical ones by applying the

inverse, M−1
tel−meas:

mmcorr, mm_rx, mm_tel_iau, parallactic_deg, stk_meas, stk_corr, $

/m_rho_x, /m_tel_iau

Note the keywords m rho x and m tel iau. Setting them applies Mρx and Mtel−IAU, respectively.

Not setting m rho x removes the correction for position angle, which keeps Stokes Q (the difference

XX − Y Y ) and U (the cross product XY) separate; this can be useful when trying to detect very



– 40 –

weak polarization because the cross products are unaffected by gain errors. Not setting Mtel−IAU

provides results in the telescope frame. The defaults are not to set these keywords.

11. AN ILLUSTRATIVE TEXTBOOK EXAMPLE: POSITION-SWITCHED

DATA

Let’s see how the above procedures are used together to determine the polarized Stokes pa-

rameters for on-off observations of an astronomical source.

11.1. Stage 1

First, deal with the Diode deflections. Suppose we have 10 DIODEON and DIODEOFF spec-

tra, each with 32 channels, in each of two polarizations xx, yy; these are the outputs from either a

native-linear or native-circular feed. The freq array has 32 elements. Then we have the self-product

arrays diodeonxx[32,10], diodeoffxx[32,10] and diodeonyy[32,10], diodeoffyy[32,10];

and we have the cross-product arrays diodeonxy[32,10], diodeoffxy[32,10] and diodeonyx[32,10],

diodeoffyx[32,10]. We will use all 32 channels in the calibration. We have Diode values tcalxx,

tcalyy. We invoke init cal, which calculates the factors CpK and phase correction from the cal

deflection using the 3 basic procedures in §9:

init_cal, gainchnls, tcalxx, tcalyy, freq, dpdf_guess, $

diodeonxx, diodeoffxx, diodeonyy, diodeoffyy, $

diodeonxy, diodeoffxy, diodeonyx, diodeoffyx, $

cts_per_k_xx, cts_per_k_yy, $

phase_zero, phase_slope, phase_cntr, rf=0

Next, apply these derived calibration parameters to the data. Suppose we have 60 on-source

and off-source self-product arrays in each of two polarizations srconxx[32,60], srcoffxx[32,60]

and srconyy[32,60], srcoffyy[32,60]; and we have the cross-product arrays srconxy[32,60],

srcoffxy[32,60] and srconyx[32,60], srcoffyx[32,60].

Finally, we have 10 values of cts per k xx that apply to the 60 source measurements, so we

need a 60-element integer array telling which cts per k xx element to use for each src measurement;

call this 60-element array cal indx.

We invoke products to stokes 2021 to use the results from init cal to calculate the mea-

sured Stokes parameters Smeas:

products_to_stokes_2021, gainchnls, cal_indx, cts_per_k_xx,, cts_per_k_yy, $
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phase_zero, phase_slope, freq, $

srconxx, srcoffxx, srconyy, srcoffyy, $

srconxy, srcoffxy, srconyx, srcoffyx, $

stki_meas, stkq_meas, stku_meas, stkv_meas

Note that Smeas is the Stokes array version of the 4 Stokes parameters stki meas, . . .

11.2. Stage 2

Stage 2 uses the output of Stage 1, Smeas, to either (1) derive the Mueller matrix coefficients,

or (2) to apply the Mueller matrix to obtain Stel or SIAU. For the latter, we use

stk_meas= [stki_meas, stkq_meas, stku_meas, stkv_meas]

mmcorr, mm_rx, mm_tel_iau, parallactic_deg, stk_meas, stk_iau, $

/m_rho_x, /m_tel_iau

This converts from the measured values to the telescope system by applying the inverse of mm tel meas.

Setting the keyword m rho x applies the Mρx correction; default is not to set it. Setting the key-

word m tel iau converts from the telescope system to the IAU system by applying mm tel iau;

again, default is not to set it.

12. A REAL-LIFE EXAMPLE: POSITION-SWITCHED DATA on 3C286

We illustrate the use of RHSTK 2021 software for both deriving and applying the Mueller

matrix coefficients for a straightforward set of ON/OFF data on the linearly-polarized calibration

source 3C286 observed with the GBT at multiple parallactic angles. This was an attempt to

measure Zeeman splitting of the z = 0.692 HI absorption line against 3C286. The initial publication

incorrectly claimed a detection (Wolfe et al. 2008Natur.455..638W), but the polarization was linear

instead of circular and therefore not Zeeman splitting (Wolfe et al. 2011ApJ...733...24W); the

problem was an error in an earlier version of the RHSTK software.

We will take 3 steps: (1) use the 3C286 data to derive MRX; (2) apply the matrix corrections

to determine the polarized Stokes parameters of 3C286; (3) re-derive MRX using the Mueller-

corrected original data. Using the Mueller-corrected data for (3) means that the re-derived MRX

parameters should be zero, and the re-derived MRX itself should be unitary, so this serves as a

check on our techniques.

This example resides in rhstk/rhstk examples/pswitch/artiedata . The datafile contains

two structures, src (58 elements) and cal (15 elements). The src data are position switched, with
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alternate scan numbers being on and off source. Thus, src[0] is on source, src[1] is off source, etc.

The cal data are interspersed with the src data. The datastream begins with a Cal measurement,

which consists of two spectra, one with Diode on and one with Diode off; this has cal.scannum=1.

Every fifth scannum is a Cal measurement: thus, src.scannum=[2,3,4,5,7,8,9,10,12,13,14,15,...] and

cal.scannum=[1,6,11,...]. Thus, the observing consists of groups of five scan numbers, the first of

which is a Cal measurement and the next four are source measurements. Each cal measurement

has a single subscan, which contains both the DIODEON and DIODEOFF measurements. Each

src measurement has 237 subscans, all of which have identical observing parameters (such as being

on source or off source).

You can distinguish between on source and off source scans by the src.subscan.cra2000,

which is the right ascension in hours; on-source measurements are at higher right ascension. The

idea of this position-switched measurement was to cover the same hour-angle range for the on-

source and off-source measurements within each pair. Each source scan lasts 4 minutes of time,

so the on- and off-source right ascensions are separated by one degree. Within each on/off pair,

the on-source data were taken first, so covering the same hour angle range within each pair would

require the off-source right ascension to be higher than the on-source one; the opposite occurred,

which was a mistake in setting up the observing file.

The calibrated Stokes parameters refer to the source deflection. Thus there are half as many

calibrated spectra as there are on- and off-source uncalibrated spectra. The output of this Stokes

calibration calculation consists of 29 switched, calibrated sets of 237 spectra apiece—a total of 6873

position-switched spectra. These are derived from 29 pairs of on- and off-source src spectra.

12.1. The Stage 1 IDL commands for this example

Our goal in this example is (1) we determine the MRX coefficients using mmfit 2016.pro;

(2) we use the derived MRX in mmcorr.pro to obtain the 3C286 Stokes parameters (using the

very same 3C286 data). This illustrative example serves as a check on the accuracy of the derived

MRX. We do these for both mmfit 2016.pro. and mparamsfit.pro.

Run the IDL session in rhstk 2021/rhstk examples/mueller/artiedata. Look at the README

file, which tells how to invoke the associated command files and run-time files; it also provides some

commentary. More detailed documentation is in the run-time procedures (such as stg0.idlprc.pro)

and the procedures (such as mmcorr.pro).8

The following IDL commands sum the measured Stokes parameters over channels to create a

‘continuum’ version and divides the 3 polarized Stokes parameters by Stokes I to create fractional

continuum Stokes parameters. It uses them to derive the Mueller matrix parameters, and plots the

8A command file with name command.idl.pro is initiated in IDL by typing @command.idl; a run-time file with

name runtime.idlprc.pro is initiated by typing .run runtime.idlprc.
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input data and results in Figure 7.

IDL> .run stg0.idlprc ;reads the datafile and defines some

quantities using info in the datafile.

IDL> @init_params.idl ;defines parameters needed for running the stage

1 and 2 software.

IDL> .run stg1.idlprc ;does all the Stage 1 calculations

12.2. The Stage 2 IDL commands, using mmfit 2016.pro or mmfit 2016 chisq.pro

In Stage 2 we first derive the Mueller matrix coefficients using mmfit 2016.pro.

IDL> .run stg2.idlprc ;does all the Stage 2 calculations using least

; squares; see plot in Figure 7 left panel.

or

IDL> .run stg2\_chiaq.idlprc ;does all the Stage 2 calculations

; using chi-square; see plot in Figure 7 right panel.

We then apply the Mueller matrices to obtain the calibrated Stokes parameters. finally, we

check the results by re-deriving the Muller matrix coefficients form the Mueller-corrected data; the

derived corrections should be zero. First, we rerun to produce left panel of Figure 8:

IDL> m_rho_x=0 ;setup for runniing stg3.idlprc below; tells mmcorr

to apply mm_RX but not mm_rho_x.

IDL> .run stg3.idlprc ;applies Mueller matrix corrections (using

mmcorr.pro) and sets up inputs to rerun stg2.idlprc using

the Mueller-corrected data as input.

IDL> .run stg2.idlprc ;rerun stg2.idlprc and produce the figure.

The resulting Figure 8, left panel, plots M−1
RX · Smeas, which are the actual Stokes parameters of

3C286 with position angle rotated by the parallactic angle. The MRX-corrected measured Stokes

parameters are amplitude- and phase-corrected, so when Q and U are plotted vs. parallactic angle

the amplitudes should be identical and they should be 45◦ apart; also, V should be zero. Such is

the case.

Finally, we produce the right panel of Figure 8:
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Fig. 7.— The 3 polarized components of Smeas for 3C286 versus parallactic angle. As in equation 11, these

components are the intensity- and phase-calibrated voltage products XX−Y Y (red), 2XY (green), and 2YX (blue).

The least-squares derived Mueller matrix parameters, which determine MRX, are listed below the figure. Left panel:

from mmfit 2016.pro. Right panel: from mmfit 2016 chisq.pro.

IDL> m_rho_x=1 ;in stg3.idlprc below, tells mmcorr

to apply mm_RX and also mm_rho_x.

IDL> .run stg3.idlprc ;applies Mueller matrix corrections (using

mmcorr.pro) and sets up inputs to rerun stg2.idlprc using

the Mueller-corrected data as input.

IDL> .run stg2.idlprc ;rerun stg2.idlprc and produce the figure.

The resulting Figure 8, right panel, plots the fully-corrected Stokes parameters Stel. These values

should be independent of parallactic angle, which is the case. Evidently our calibration scheme

works!

12.3. The Stage 2 IDL commands, using mparamsfit.pro

We do

IDL> .run domparamsfit.idlprc.pro,

which produces the output structures mmcoeffs out and sigmmcoeffs out. These are substantially

the same as the output structures of mmfit 2016.pro.
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Fig. 8.— The 3 polarized components of M−1
RX · Smeas for 3C286 versus parallactic angle. Left panel: As in

equations 13 and 14, these are equal to Mρx · Stel, which are the actual Stokes parameters of 3C286 with position

angle rotated by the parallactic angle. Left panel: As in equations 13 and 14, these are equal to Stel, which are the

actual Stokes parameters of 3C286 in the telescope frame.
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