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Kramers-Kronig relations linking the attenuation and dispersion are presented for a linear acoustic system. 
These expressions are used as a starting point to derive approximate, nearly local expressions relating the 
ultrasonic attenuation at a specific frequency to the local frequency derivative of the phase velocity (i.e., 
dispersion). The validity of these approximate relationships is demonstrated in several acoustic systems 
exhibiting substantially different physical properties. 

PACS numbers: 43.35.Bf, 43.80. Cs, 43.20.Hq, 43.35.Fj 

INTRODUCTION 

Quantitative relationships between attenuation and the 
frequency dependence of the phase velocity (dispersion), 
the validity of which depend only upon the properties of 
linearity and causality of the system under investiga- 
tion, have proven useful in a number of settings. Ex- 
amples include the Kramers-Kronig relationships TM 
connecting the in-phase and out-of-phase components 
of the appropriate susceptibility in electromagnetic and 
acoustic phenomena and the Bode relationship s con- 
necting the gain and phase shift in amplifier circuits. 
In a previous short report we discussed quantitative 
relationships between the attenuation and dispersion for 
a linear acoustic system. 6 The present study presents 
a derivation of the generalized relationship between the 
ultrasonic attenuation and dispersion based on linear 
response theory. In addition, useful approximate forms 
for these relations are derived under the conditions 

that the attenuation and the dispersion do not vary rap- 
idly as functions of frequency..The use of these ap- 
proximate relationships for a wide range of acoustic 
systems is illustrated and the implications of the exis- 
tence of these relations concerning investigation of the 
physical mechanisms responsible for the observed at- 
tenuation are examined. 

In Sec. I formulas are derived for predicting the ul- 
trasonic attenuation as a function of frequency from 
measurements of the frequency dependence of the dis- 
persion and vice versa. In Sec. II we illustrate the use 
of the approximate relations, including a theoretical 
analysis of a simple relaxation. In this section we also 
compare the results of experiments with predictions 
based on the theory of Sec. I in a number of different 
acoustic systems. Section III is devoted to a discussion 
of the implications of the existence of these generalized 
relationships as regards the study of mechanisms de- 
scribing the propagation of ultrasound in materials. 
Specifically, the formulas developed can be used to 
predict ultrasonic properties not yet measured and to 
set limits on properties which may lie beyond the range 
of currently available measurement techniques. In ad- 
dition, the existence of these completely general rela- 
tionships renders invalid attempts to compare the at- 
tenuation and dispersion as a means of validating some 
specific model proposed to explain the attenuation. As 
noted in the previous short report, a demonstration of 

agreement between the dispersion and attenuation pre- 
dicted from a specific model and the measured disper- 
sion and attenuation serves only to establish that the 
specific mechanism and the system as measured satisfy 
the conditions of causality (i.e., that effects do not pre- 
cede their causes) and linearity (i.e., that to some ap- 
proximation the response of the system is linearly pro- 
portional to the stimulus). 6 

I. THEORY 

We consider an isotropic acoustic medium described 
by a generalized form of Hooke's law, and analyze the ' 
response of ,this medium to an incident acoustic wave 
in terms of linear response theory. Utilizing the form- 
alism of linear response theory, we review the deriva- 
tion of the Kramers-Kronig equations which relate the 
in-phase and out-of-phase components of the response 
of the acoustic system. We then use this result in con- 
junction with the dispersion relation for the propaga- 
tion of sound in the medium to obtain general expres- 
sions which relate the frequ,ency dependence of the at- 
tenuation coefficient to the frequency dependence of the 
phase velocity. Finally, we examine these expressions 
for the case in which the phase velocity and the atten- 
uation coefficient do not vary rapidly with frequency. 
Under these conditions, the general relations are cast 
into a more useful expression which relates the atten- 
uation coefficient to the dispersion over a limited fre- 
quency range. 

In the Hooke's law limit, the ultrasonic equation of 
motion describes a linear system whose response can 
be represented by 

s(t)= K(t-t')p(t')dt', (1) 

where s is the condensation, p is the pressure, and K 
is the adiabatic compressibility. In Eq. (1), K(t-t') 
plays the role of generalized susceptibility relating the 
response s(t) to the stimulus p(t'). The central theme 
of this paper is that the principle of causality places 
restrictions on the behavior of K(t-t'). Specifically, 
the response s(t) can depend upon past but not upon fu- 
ture values of the stimulus p(t'). The restrictions im- 
posed by causality on the generalized susceptibility are 
conveniently expressed in terms of the real and imagi- 
nary parts of the Fourier transform of the compressi- 
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bility. If the Fourier transform exists for s, K, and 
where the Fourier transform for K(t) is defined as 

K(t) = . • K(co)e 'i•t , (2) 
then the response of the system in the frequency do- 
main becomes 

S(co) = K( CO)P(co), (3) 

where K(co) is the frequency domain compressibility. 
in general, K(co) is a complex function, K(co)=K•(co) 
+ iK2(co), where Kx(co) is the real part and K2(co) is the 
imaginary part of the compressibility. 

To determine the relationship between the ultrasonic 
attenuation coefficient and the dispersion, we begin by 
investigating the frequency domain response of an 
acoustic system to a pressure fluctuation applied as an 
impulse, i.e., a delta function. Under the action of this 
delta function, the condensation becomes 

.o do.)' e.iOO,tK( co,) . (4) s(t)=K(t) = • 
The Kramers-Kronig relations can be obtained from 
Eq. (4) by applying two conditions. First, the com- 
pressibility, K(t), is physically measurable and thus 
must be a real function. For this condition to be sat- 

isfied, K(-w) must equalK*(+ co). That is, the real 
part of the transform of the compressibility must be a 
symmetric function and the imaginary part an antisym- 
metric function of frequency. Applying this constraint 
to Eq. (4), the condensation reduces to 

1 dco'K•(co') cosco'l+ dw'K2(co') sinco'/ s(t) =; 0o ' 

The second requirement on K(t) is that of causality, 
which states that the present condensation should not 
depend on the future pressure. Consequently, s(t) is 
zero for t< 0, which from Eq. (5) requires that 

(5) 

© fo dco'K•(co')cosco't+ dco'K2(co')sinco't=O , t<0, (6) 

or for t> 0 

fo fo dco'Kx(co') cosco't- dco'K2(co') sinco't= O, t> O. (7) 

To cast this result into a more useful form, we mul- 
tiply (7) by exp(-Xt), where X equals ½+ico, and inte- 
grate over positive times to obtain 

fo © XK•(co') - CO'K2(co') co,•. +.X•.. . rico'= 0, ½>0. (8) 
We now consider the limit as ½ approaches 0, that is as 
X approaches ico. Focusing on the denominator of Eq. 
(8) we observe that 

( co'2 + X2) 'x - P( co'2 - co2)'x - i•r6( co'2 - 

= _ irr - + + 

(9) 

where P stands for the principal part in a subsequent 

integration. ?,s Using Eq. (9), the real and imaginary 
parts of (8) then go into 

fo • co'K•(co') =-2 e - ao' 

2 fo 'ø COKx(CO') dco'. 

(lO) 

(11) 

Equations (10) and (11) are the Kramers-Kronig re- 
lations for longitudinal waves. In a real acoustic sys- 
tem, inertia will ensure that the response and hence 
the generalized susceptibility to which the response is 
proportional falls off rapidly enough at high frequencies 
so that the integrals converge. In the original Kram- 
ers-Kronig application (electric susceptibility), al- 
lowance was also made for an instantaneous component 
of response K•6(t), where K• is the value of the gen- 
eralized susceptibility at arbitrarily high ("infinite") 
frequency. The causality condition was applied to the 
remainder of the total response [K(t)-K•5(t)]. A sim- 
ilar approximation is useful in the acoustic problem, 
in which ease K•(co') in the above is to be replaced by 

These equations can be used to relate the attenuation 
coefficient and phase velocity because the frequency 
dependent compressibility also must satisfy the disper- 
sion relation for acoustic wave propagation 

where k is the wavenumber of the ultrasonic wave and 

90 is the density of the medium. To satisfy Eq. (12), 
k must be complex. We make the identification that the 
wavenumber k equals co/C(co)+ ia(o•), where C(co) is the 
phase velocity and a(co) is the attenuation coefficient. 
Thus, for example, a plane wave traveling in the +x 
direction propagates as e i(kx'•t )= e'aXe iœ•x/c (•)-•t]. 
The compressibility can be related to the attenuation 
coefficient and phase velocity such that 

co2 2i co a(co) 
C2(CO) - øt2(co) + C(co) = co2Pø[Kx(co) + iK2(w) ] , (13) 

(.0 2 

C2 (co) - a2(co)= co2poK•(co), (14a) 

C(W) = coPø K2(co). (14b) 

or 

In the usual case in which the magnitude of the imagi- 
nary part of the wavenumber is much less than the 
magnitude of the real part [i.e., a(co)C(co)/co<<l] for 
all frequencies, the set of equations [Eq. (14)] de- 
couples and the phase velocity and attenuation coeffi- 
cient are determined by 

C(co)= 1/[PoK•(co)]•/2, (15a) 
a(co) = [poC(co)/2] coK2(co). (15b) 

Equations (10), (11), and (15) represent a complete de- 
scription of the frequency domain response of the 
acoustic system in terms of the phase velocity and the 
attenuation coefficient. 9 Using these equations, the 
phase veloci•' can •- ...... +• • all frequcn- ....... p .... exactly a + 
cies if the attenuation coefficient is known at all fre- 
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quencies. Similarly, a knowledge of the phase velocity 
at all frequencies can be used to compute the attenua- 
tion at all frequencies with Eqs. (10), (11), and (15). 
The full Kramers-Kronig relations have proved use- 
ful in a number of settings where the dominant contri- 
bution to the infinite integrals is highly localized in 
frequency. For example, the exact relations are wide- 
ly applied in the field of magnetic resonance, where the 
resonance constitutes the dominant contribution to the 

integral. However, these expressions appear to be of 
limited usefulness in settings where the integrals are 
not highly localized since the computation of one vari- 
able appears to necessitate a knowledge of the comple- 
mentary variable for all frequencies; i.e., Eqs. (10) 
and (11) are nonlocal. 

We now utilize the analogy between the acoustic 
Kramers-Kronig relation and the relationship between 
the frequency dependence of the gain and phase shift of 
an electrical amplifier to obtain a more useful expres- 
sion relating the frequency dependence of the attenua- 
tion to the dispersion over a limited frequency range 
in nonresonant systems. Starting with the Kramers- 
Kronig relation connecting the gain and phase shift of 
an electrical amplifier, Bode demonstrated that at any 
frequency the phase shift is approximately related to the 
local rate of change of the gain with frequency. s The 
approximation is quite accurate if both the gain and 
phase shift are sufficiently well behaved (e.g., exhibit 
no resonances) over a limited frequency range centered 
at the frequency of interest. A similar welation be- 
tween the attenuation coefficient and the phase velocity 
can be derived starting with Eq. (11) and using a change 
of variable to evaluate the integral. We define the vari- 
able x= ln(w'/w) and consider the integral of Eq. (11). 
The imaginary part of the compressibility becomes 

2 K2(w)=-7 -.. eX _ e. x dx , (16) 
where G(x)=Kx(w') ahd Kx(oo)= G(øø) since x is infinite 
for w' equal to infinity. Integrating Eq. (16) by parts, 
we find that K,(w) reduces to 

I f •'dG(x) In coth(I-•) dx (17) ' 
The integral in Eq. (17) can be east into an approximate 
local form due to the character of the function 

In coth( I x I/2), which is illustrated in Fig. 1. As is 
evident from this figure, the function has a sharp sin- 
gularity at x= 0, and thus the magnitude of the integral 
in Eq. (17) is dominated by the value of the integrand at 
x= 0. Consequently, if the integral is rewritten in the 
form 

K,(w): - • _ F(x) In coth dx, (18) 
where F(x) equals dG(x)/dx, then F(x) can be expanded 
about x = 0 to find an approximation to the integral. 
Expanding F(x) about x = 0, and noting that the integral 
over odd powers of x in the expansion vanishes since 
lncoth( I x I/2) is an even function of x, Eq. (18) becomes 

K•.(w) = -7 = •2n)! x In coth dx. (19) 

100 

80 

• 60 

• 4o 

2o 

I i I I 1 
-2 -I 0 I 2 

x 

FIG. 1. This figure illustrates the character of the function 
ln[coth( ix I/2)] in the neighborhood of x equals zero. 

In Eq. (19) the term Fzn(0) corresponds to the 2nth 
derivative of F(x) evaluated at x = 0. Expanding 
ln eoth( I x I/2) in powers of e 'x, the integral of Eq. (19) 
can be evaluated: 

(20) 

ß Equation (20) indicates that K2(o)) iS related to the sum 
of the even derivatives of F(x) evaluated at x= 0. If 
both the phase velocity and attenuation coefficient are 
slowly varying functions of f, requeney, then this sum 
can be approximated by the first few terms. Under 
these conditions, 

- 7 + (21) 

or substituting for F(x), 

K•.(w)= 7r dG(x) [ •3 d3G(x) [ _- +.... (22) 
2 dx •--o 24 dx 3 x=o 

As is demonstrated below, dG(x)/dx is related to the 
dispersion, dC(w)/dw. Correspondingly, all higher 
derivatives of G(x) are related to higher derivatives 
of the phase velocity with respect to frequency. Con- 
sequently, if the change in dispersion is small over a 
limited frequency range (e.g., no sharp resonances are 
present over the frequency range of interest) then the 
higher order derivatives can be neglected in the expan- 
sion presented in Eq. (22). The leading term in Eq. (22) 
can be rewritten as 

dG [ dKx( w) doo [ 
and K,(w) becomes 

dKx (w) (23) 
do., ' 

•r dKx(w) (24) dw ß 

Equation (24) relates the imaginary part of the com- 
pressibility at a frequency w to the local rate of change 
of the real part of the compressibility at the same fre- 
quency. Using Eq. (15) to relate the real part of the 
compressibility to the phase velocity, the derivative of 
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Kx(co) with respect to frequency becomes 

mq ( oo) : _ tic( 04 ( ) 
dco PoC3(co) dco 

The dispersion and the attenuation coefficient can now 
be related by combining Eqs. (15b), (24), and (25) with 
the result that dC(w)/dw becomes 

dC( •) 
d• = 2c•(•) •(•)/•' (26) 

and q(w) becomes 

• • dC( •) ( 2• ) a(•)=2c•(•) d• ' 
• we rewrite Eq. (26) as 

- a•, (•8) 
C"'w) w" and •ntegrate both s•des from some reference frequen- 

cy w o to w, then the phase velocity is related to the at- 
tenuation coefficient according to 

.... w, • dw' , (29) C o - C(w) n •o 
where Co is the sound velocity at w o. Eq•tions (8•) 
and (29) represent nearly local generalized ultrasonic 
attenuation-dispersion relations. The magnitude of the 
dispersion is usually small, so that these expressions 
can be further s•plffied to 

nw • dC(w) (30a) ' 

•c= c(•) - Co=.• •,,a•', (30b) 
WO 

where C(w) is written as Co+aC(w) with aC(w)<<Co, 
and only terms of order •C(w) are retained. In the ne• 
section, the validity of Eq. (30) in several different 
acoustic systems is discussed. 

II. VERIFICATION OF THE NEARLY LOCAL 

RELATIONSHIPS 

In the previous section we derived approximate forms 
for the Kramers-Krontg relations linking the attenua- 
tion coefficient at a frequency co to the local rate of 
change of the phase velocity with frequency, These 
nearly local forms should represent an accurate de- 
scription of the relationship between the attenuation and 
the dispersion in the absence of rapid variations with 
frequency such as those associated with a sharp reso- 
nance, In this section we explore the validity of these 
expressions in several physical systems. 

Relaxational phenomena represent an important class 
of loss mechanisms. Although arising from many dif- 
ferent physical sources, the class of loss mechanisms 
associated with relaxation results in frequency depen- 
dent attenuation of the form 

+ 

In Eq. (31), •(•o)/w is the attenuation per cycle, R o is 
afro. nno. ne.v indopondo. nte. nn.•tant, and co o iv the ro. laxa- 
tion frequency. The attenuation per cycle for a single 
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FIG. 2. The attenuation per cycle for a single relaxation nor- 
malized to its value at the relaxation frequency is illustrated 
as a function o.f frequency in the top panel. In the lower panel, 
the dispersion obtained from the approximate, nearly local re- 
lation [Eq. (29)] is compared to the dispersion obtained from 
the exact Kramers-Kronig relation. 

relaxation normalized to its value at the relaxation fre- 

quency is illustrated as a function of frequency in Fig. 
2(a). Using the form of the attenuation per cycle [Eq. 
(31)] illustrated in Fig. 2(a), we have computed the 
dispersion according to the exact, nonlocal Kramers- 
Kronig relationship [Eqs. (10) and (15)] and according 
to the approximate, nearly local relationship [Eq. (29)]. 
In Fig. 2(b) we compare the dispersion computed from 
the nearly local approximate form to the dispersion ob- 
tained from the exact Kramers-Kronig relation. This 
figure clearly indicates that both the character and the 
numerical magnitude of the dispersion associated with 
a single relaxation is accurately described by the ap- 
proximate nearly local relation derived in the previous 
section. 

To further test the validity of the approximate rela- 
tions in describing the relationship between attenuation 
and dispersion in materials exhibiting relaxation, we 
investigate the properties of a system consisting of a 
solution of CoSO 4 in water. The attenuation coefficient 
and dispersion were measured in this system over the 
range of approximately 1 to 10 MHz by Carstensen. •ø 
In the top panel of Fig. 3 we present the product of the 
attenuation coefficient times the wavelength measured 
in a 1 molar solution of CoSO4 in water over the fre- 
quency range of 500 kHz to 10 MHz. For small values 
of the dispersion, the attenuation per cycle is simply 
proportional to c•X. From the top panel of Fig. 3 it ap- 
pears that for frequencies less than 3 MHz, the atten- 
,,•+•, ,•,•,• o,,ol,• i• accurately •escribed by • simple 
relaxation, whereas above 5 MHz, the data can be fit 
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FIG. 3. The attenuation times the wavelength measured in a 
one molar CoSO 4 solution by Carstensen is illustrated in the 
top panel. In the lower panel, the dispersion predicted by ap- 
plying Eq. (30) to the attenuation data of the top panel is com- 
pared to the measured dispersion. 

to a straight line [i.e., c•(co) proportional to co2]. In the 
lower panel of Fig. 3 we compare the change in the 
sound velocity from its value at 1 MHz as measured by 
Carstensen to that predicted by Eq. (30) using the at- 
tenuation data of the top panel. Both the qualitative 
character and numerical value of the dispersion mea- 
sured in solutions of C oSO 4 in water are accurately 
predicted by the approximate relations derived in the 
previous section. 

We also investigated the validity of the approximate 
forms of the Kramers-Kronig relations by comparing 
the attenuation and dispersion measured from 1 to 10 
MHz in polyethylene. We chose polyethylene for this 
investigation because it represents a system that ex- 
hibits acoustic properties very different from those of 
the systems described above. Specifically, polyethy- 
lene is a solid and exhibits losses which are relatively 
large in magnitude over the low MHz range (c•X equals 
0.13 at 5 MHz). We measured the attenuation coeffi- 
cient and'the velocity of sound using standard tech- 
niques. u,•' Errors in the attenuation coefficient deter- 
mination were estimated to be less than 5% and errors 
in the velocity determination less than 1 part in 104. 
The attenuation coefficient measured in a polyethylene 
plate is plotted as a function of frequency over the 
range 1 to 10 MHz in the top panel of Fig. 4. As illus- 
trated in this figure, the attenuation coefficient is 
nearly a linear function of frequency over this frequen- 
cy range. Consequently, according to Eq. (30), •C 
should be a nearly logarithmic function of frequency 
over the same frequency range. In the bottom panel of 
Fig. 4, •C as determined experimentally is compared 
with that obtained from Eq. (30) (dashed curve) using 
the attenuation data of the upper panel. The frequency 

z 
w 

6O 

E 40 

PO 

/ , Measured 

--- Predicted 

'• • Measured 

5 5 7 9 

FREQUENCY (MHz) 

FIG. 4. The top panel shows the attenuation measured in a 
polyethylene plate. In the lower panel, the dispersion pre- 
dicted by applying Eq. (30) to the attenuation data of the top 
panel is compared to the measured dispersion. 

corresponding to C o was taken to be 1 MHz. Not only 
is •C a nearly logarithmic function of frequency in 
polyethylene, as predicted, but over a decade in fre- 
quency the numerical magnitude of • C predicted by Eq. 
(30) is nearly identical to that measured. These re- 
suits clearly indicate that the approximate nearly local 
relations are also valid in polyethylene over the range 
1 to 10 MHz. 

II I. DISCUSSION 

In this study we considered acoustic propagation in 
a system which satisfies Hooke's law in the context of 
linear response theory, where the compressibility is 
identified as the generalized susceptibility of the linear 
acoustic system. Because an acoustic medium repre- 
sents a causal system, the real and imaginary parts of 
the frequency dependent compressibility are related by 
the Kramers-Kronig relations. Using the dispersion 
relation for acoustic propagation, we have shown that 
the real part of the compressibility is related to the 
phase velocity and the imaginary part of the compres- 
sibility is related to the attenuation coefficient. Con- 
sequently, the Kramers-Kronig relations can be used 
in conjunction with the dispersion relation to obtain ex- 
pressions linking the phase velocity to the attenuation 
coefficient. These nonlocal expressions are exact, and 
are independent of the particular mechanism responsi- 
ble for the attenuation. In See. I we demonstrated that 

the exact, nonlocal Kramers-Kronig relations could be 
approximated by nearly local relations linking the at- 
tenuation and the dispersion in systems which do not 
exhibit rapid frequency variations. The validity of the 
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FIG. 5. The attenuation measured in normal dog myocardium 
is illustrated in the top panel. The lower panel presents the 
dispersion predicted by applying Eq. (30) to the attenuation 
data of the top panel. 

nearly local, approximate relations was tested in a 
number of acoustic systems possessing a range of loss 
mechanisms. The results of theoretical analysis and 
experiments presented in Figs. 2, 3, and 4 clearly 
show that the approximate relations represent an ac- 
curate description of acoustic propagation in several 
systems which do not exhibit rapid variations with fre- 
quency over the range of interest. 

The approximate expressions presented in Eq. (30) 
can be used to predict the ultrasonic properties of ma- 
terials which may be difficult to obtain using currently 
available measurement techniques. For example, the 
ultrasonic dispersion is difficult to measure accurately 
in soft tissue specimens. However, the dispersion in 
soft tissue can be estimated from a knowledge of the 
measured attenuation coefficient. In Fig. 5 we predict 
the dispersion in normal dog myocardium from mea- 
surements of the attenuation coefficient obtained in our 

laboratory. The top panel of Fig. 5 illustrates the at- 
tenuation coefficient as a function of frequency over the 
range 1-10 MHz. In the lower panel of Fig. 5 we pre- 
sent the dispersion predicted by Eq. (30). According 
to Eq. (30), the nearly linear dependence of the attenua- 
tion coefficient on frequency for normal dog myocardi- 
um gives rise to the prediction of nearly logarithmic 
frequency dependence for the dispersion. The numeri- 
cal value of the change in phase velocity from 1 to 10 
MHz is less than 2 parts in 103 of the velocity. Conse- 
quently, the dispersion anticipated in normal dog myo- 
cardium, and most soft tissues, is very small. There- 

fore dispersive effects, such as distortion in the ultra- 
sonic pulse shape, are correspondingly negligible. 

Finally, as noted above, the relationship between the 
attenuation and dispersion is independent of the speci- 
fic mechanism responsible for the attenuation. Sev- 
eral authors have stated that the existence of disper- 
sion in a material is a strong indication that relaxa- 
tional processes are responsible for the attenuation in 
that material. •3,•4 As we noted in a previous publica- 
tion, 6 and have clearly demonstrated in the present 
study, the existence of dispersion is in no way indica- 
tive of a particular mechanism of propagation, but 
rather merely establishes that a system which exhibits 
attenuation must exhibit dispersion if it satisfies the 
conditions of linearity and causality. An appreciation of 
which features of ultrasonic propagation are determined 
by general laws of physics as opposed to those features 
which are specific to the particular mechanism should 
prove useful in establishing the mechanisms responsible 
for the propagation of ultrasound in a material. 
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