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Collisions and Encounters of Stellar

Systems

Our Galaxy and its nearest large neighbor, the spiral galaxy M31, are falling
towards one another and will probably collide in about 3 Gyr (see Plate 3
and Box 3.1).

A collision between our Galaxy and M31 would have devastating conse-
quences for the gas in both systems. If a gas cloud from M31 encountered a
Galactic cloud, shock waves would be driven into both clouds, heating and
compressing the gas. In the denser parts of the clouds, the compressed post-
shock gas would cool rapidly and fragment into new stars. The most massive
of these would heat and ionize much of the remaining gas and ultimately ex-
plode as supernovae, thereby shock-heating the gas still further. Depending
on the relative orientation of the velocity vectors of the colliding clouds, the
post-collision remnant might lose much of its orbital angular momentum,
and then fall towards the bottom of the potential well of the whole system,
thereby enhancing the cloud-collision and star-formation rates still further.
We do not yet have a good understanding of this complex chain of events, but
there is strong observational evidence that collisions between gas-rich galax-
ies like the Milky Way and M31 cause the extremely high star-formation
rates observed in starburst galaxies (§8.5.5).

In contrast to gas clouds, stars emerge unscathed from a galaxy collision.
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To see this, consider what would happen to the solar neighborhood in a
collision with the disk of M31. According to Table 1.1, the surface density of
visible stars in the solar neighborhood is ! 30M! pc−2. Assuming that most
of these are similar to the Sun, the number density of stars is N ! 30 pc−2

and the fraction of the area of the galactic disk that is filled by the disks of
these stars is of order NπR2

! ≈ 5 × 10−14. Thus even if M31 were to score
a direct hit on our Galaxy, the probability that even one of the 1011 stars in
M31 would collide with any star in our Galaxy is small.1

However, the distribution of the stars in the two galaxies would be rad-
ically changed by such a collision, because the gravitational field of M31
would deflect the stars of our Galaxy from their original orbits and vice
versa for the stars of M31. In this process, which is closely related to violent
relaxation (§4.10.2), energy is transferred from ordered motion (the relative
motion of the centers of mass of the two galaxies) to random motion. Thus
the collision of two galaxies is inelastic, just as the collision of two lead balls
is inelastic—in both cases, ordered motion is converted to random motion, of
the stars in one case and the molecules in the other (Holmberg 1941; Alladin
1965). Of course, since stars move according to Newton’s laws of motion, the
total energy of the galactic system is strictly conserved, in contrast to the
lead balls where the energy in random motion of the molecules (i.e., heat) is
eventually lost as infrared radiation.

A consequence of this inelasticity is that galaxy collisions often lead to
mergers, in which the final product of the collision is a single merged stellar
system. In fact, we believe that both galaxies and larger stellar systems such
as clusters of galaxies are created by a hierarchical or “bottom-up” process
in which small stellar systems collide and merge, over and over again, to form
ever larger systems (§9.2.2).

The most straightforward way to investigate what happens in galaxy en-
counters is to simulate the process using an N-body code. Figure 8.1 shows
an N-body simulation of the collision of the Galaxy and M31. This is an
example of a major merger, in which the merging galaxies have similar
masses, and the violently changing gravitational field leads to a merger rem-
nant that looks quite different from either of its progenitors. In contrast,
minor mergers, in which one of the merging galaxies is much smaller than
the other, leave the larger galaxy relatively unchanged.

Not every close encounter between galaxies leads to a merger. To see
this, let v∞ be the speed at which galaxy A initially approaches galaxy B and
consider how the energy that is gained by a star in galaxy A depends on v∞.
As we increase v∞, the time required for the two galaxies to pass through
one another decreases. Hence the velocity impulse ∆v =

∫
dtg(t) due to the

gravitational field g(t) from galaxy B decreases, and less and less energy is
transferred from the relative orbit of the two galaxies to the random motions

1 We have neglected gravitational focusing, which enhances the collision probability
by a factor of about five but does not alter this conclusion (eq. 7.194).
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Figure 8.1 An N-body simulation of the collision between the Galaxy (bottom) and M31
(top) which is expected to occur roughly 3Gyr from now. The simulation follows only
the evolution of the stars in the two galaxies, not the gas. Each galaxy is represented by
roughly 108 stars and dark-matter particles. The viewpoint is from the north Galactic
pole. Each panel is 180 kpc across and the interval between frames is 180 Myr. After
the initial collision, a open spiral pattern is excited in both disks and long tidal tails are
formed. The galaxies move apart by more than 100 kpc and then fall back together for
a second collision, quickly forming a remnant surrounded by a complex pattern of shells.
The shells then gradually phase mix, eventually leaving a smooth elliptical galaxy. Image
provided by J. Dubinski (Dubinski, Mihos, & Hernquist 1996; Dubinski & Farah 2006).

of their stars; in fact, when v∞ is large, |∆v| ∝ 1/v∞. Thus, when v∞
exceeds some critical speed vf , the galaxies complete their interaction with
sufficient orbital energy to make good their escape to infinity. If v∞ < vf ,
the galaxies merge, while if v∞ % vf the encounter alters both the orbits and
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the internal structures of the galaxies only slightly.2 This simple argument
explains why most galaxies in rich clusters have not merged: although the
density of galaxies in the clusters is high, so collisions are frequent, the
random velocities of cluster galaxies are so high that the loss of orbital energy
in a collision is negligible—the galaxies simply pass through one another, like
ghosts.

Until the 1970s, most astronomers believed that collisions between
galaxies were negligible, except in high-density regions such as clusters. This
belief was based on the following argument. The velocities of galaxies are
the sum of the Hubble velocity (eq. 1.13) appropriate to that galaxy’s posi-
tion, and a residual, or peculiar velocity. Typical peculiar velocities are
vp ≈ 100 km s−1 (Willick et al. 1997). The number density of galaxies is de-
scribed by the Schechter law (eq. 1.18), so the density of luminous galaxies
(L ∼> L!) is n ≈ φ! ≈ 10−2 Mpc−3. Most of the stars in a typical luminous
galaxy are contained within a radius R ≈ 10 kpc, so the collision cross-section
between two such galaxies is Σ ≈ π(2R)2. If the positions and velocities of
the galaxies are uncorrelated, the rate at which an L! galaxy suffers collisions
with similar galaxies is then expected to be of order nΣvp ≈ 10−6 Gyr−1,
so only about one galaxy in 105 would suffer a collision during the age of
the universe. Such arguments led astronomers to think of galaxies as island
universes that formed and lived in isolation.

This estimate of the collision rate turns out to be far too low, for two
reasons. (i) The stars in a galaxy are embedded in a dark halo, which can
extend to radii of several hundred kpc. Once two dark halos start to merge,
their high-density centers, which contain the stars and other baryonic mat-
ter, experience a drag force from dynamical friction (§7.4.4) as they move
through the common halo. Dynamical friction causes the baryon-rich central
regions to spiral towards the center of the merged halo, where they in turn
merge. Thus the appropriate cross-section is proportional to the square of
the dark-halo radius rather than the square of the radius of the stellar distri-
bution. (ii) As we describe in §9.1, the departures of the matter distribution
in the universe from exact homogeneity arose through gravitational forces,
and in particular the peculiar velocities of galaxies relative to the Hubble
flow are caused by gravitational forces from nearby galaxies. Consequently,
the peculiar velocities of nearby galaxies are correlated—nearby galaxies are
falling towards one another, just like our Galaxy and M31—so the collision
rate is much higher than it would be if the peculiar velocities were ran-
domly oriented. In §8.5.6 we show that the merger rate for L! galaxies is
∼ 0.01 Gyr−1, 104 times larger than our näıve estimate.

When two dark halos of unequal size merge, the smaller halo orbits
within the larger one, on a trajectory that steadily decays through dynamical
friction. As the orbit decays, the satellite system is subjected to disruptive

2 Thus, galaxies behave somewhat like the toy putty that is elastic at high impact
speeds, but soft and inelastic at low speeds.
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processes of growing strength. These include steady tidal forces from the
host galaxy, and rapidly varying forces as the smaller halo passes through
the pericenter of its orbit. As stars are lost from the satellite, they spread
out in long, thin tidal streamers that can provide vivid evidence of ongoing
disruption. Eventually the satellite is completely disrupted, and its stars and
dark matter phase-mix with those of the host system.

These processes, which we examine in this chapter, are common to a
wide variety of astrophysical systems. Dynamical friction (§8.1) drives the
orbital evolution not only of satellite galaxies, but also black holes and glob-
ular clusters near the centers of galaxies, and bars in barred spiral galaxies.
Tidal forces erode satellite galaxies, globular clusters, and galaxies in clus-
ters, and also determine the lifetimes of star clusters and wide binary stars.
We shall focus on the effects of tidal forces in two extreme and analytically
tractable limits: §8.2 is devoted to impulsive tides, which last for only a
short time, while §8.3 examines the effects of static tides. §8.4 describes the
dynamics of encounters in galactic disks, and their effect on the kinematics
of stars in the solar neighborhood. Finally, in §8.5 we summarize and inter-
pret the observational evidence for ongoing mergers between galaxies, and
estimate the merger rate.

8.1 Dynamical friction

A characteristic feature of collisions of stellar systems is the systematic trans-
fer of energy from their relative orbital motion into random motions of their
constituent particles. This process is simplest to understand in the limiting
case of minor mergers, in which one system is much smaller than the other.

We consider a body of mass M traveling through a population of par-
ticles of individual mass ma ' M . Following §1.2.1 we call M the subject
body and the particles of mass ma field stars. The subject body usually is
a small galaxy or other stellar system and thus has non-zero radius, but we
shall temporarily assume that it is a point mass. The field stars are mem-
bers of a much larger host system of mass M % M , which we assume to
be so large that it can be approximated as infinite and homogeneous. The
influence of encounters with the field stars on the subject body can then be
characterized using the diffusion coefficients derived in §7.4.4. Because the
test body is much more massive than the field stars, the first-order diffu-
sion coefficients D[∆vi] are much larger than the second-order coefficients
D[∆vi∆vj ]/v (cf. eqs. 7.83 with m % ma). Thus the dominant effect of the
encounters is to exert dynamical friction (page 583), which decelerates the
subject body at a rate

dvM

dt
= D[∆v] = −4πG2Mma ln Λ

∫
d3va f(va)

vM − va

|vM − va|3
, (8.1a)
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where

Λ ≈
bmax

b90
≈

bmaxv2
typ

GM
% 1 (8.1b)

and b90 is the 90◦ deflection radius defined in equation (3.51). Here we
have used equations (7.83), assuming M % ma and adjusting the notation
appropriately. The field-star df f(x,va) is normalized so

∫
d3va f(x,va) =

n(x), where n is the number density of field stars in the vicinity of the subject
body.

We now estimate the typical value of the factor Λ in the Coulomb
logarithm. When a subject body of mass M orbits in a host system of
mass M % M and radius R, the typical relative velocity is given by
v2
typ ≈ GM/R. To within a factor of order unity, the maximum impact

parameter bmax ≈ R, where R is the orbital radius of the subject body.
Then Λ ≈ (M/M)(R/R), which is large whenever M ' M, unless the
subject body is very close to the center of the host.

If the subject body has a non-zero radius, the appropriate value for the
Coulomb logarithm is modified to

ln Λ = ln

(
bmax

max(rh, GM/v2
typ)

)
, (8.2)

where rh is the half-mass radius of the subject system (see Problem 8.2).
If the field stars have an isotropic velocity distribution,3 equation (7.88)

yields a simpler expression for the dynamical friction,

dvM

dt
= −16π2G2Mma ln Λ

[∫ vM

0
dva v2

af(va)

]
vM

v3
M

; (8.3)

thus, only stars moving slower than M contribute to the friction. Like an
ordinary frictional drag, the force described by equation (8.3) always opposes
the motion (dvM/dt is anti-parallel to vM ). Equation (8.3) is usually called
Chandrasekhar’s dynamical friction formula (Chandrasekhar 1943a).

If the subject mass is moving slowly, so vM is sufficiently small, we may
replace f(va) in the integral of equation (8.3) by f(0) to find

dvM

dt
! −

16π2

3
G2Mma ln Λf(0)vM (vM small). (8.4)

Thus at low velocity the drag is proportional to vM—just as in Stokes’s law
for the drag on a marble falling through honey. On the other hand, for
sufficiently large vM , the integral in equation (8.3) converges to a definite
limit equal to the number density n divided by 4π:

dvM

dt
= −4πG2Mman ln Λ

vM

v3
M

(vM large). (8.5)

3 See Problem 8.3 for the case of an ellipsoidal velocity distribution.
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Figure 8.2 A mass M travels from left to right at speed vM , through a homogeneous
Maxwellian distribution of stars with one-dimensional dispersion σ. Deflection of the stars
by the mass enhances the stellar density downstream, and the gravitational attraction of
this wake on M leads to dynamical friction. The contours show lines of equal stellar
density in a plane containing the mass M and the velocity vector vM ; the velocities are
vM = σ (left panel) and vM = 3σ (right panel). The fractional overdensities shown are
0.1, 0.2, . . . , 0.9, 1. The unit of length is chosen so that GM/σ2 = 1. The shaded circle has
unit radius and is centered at M . The overdensities are computed using equation (8.148),
which is based on linear response theory; for a nonlinear treatment see Mulder (1983).

Thus the frictional force falls like vM
−2—in contrast to the motion of solid

bodies through fluids, where the drag force grows as the velocity increases.
If f(va) is Maxwellian with dispersion σ, then equation (8.3) becomes

(cf. eqs. 7.91–7.93)

dvM

dt
= −

4πG2Mnm ln Λ

v3
M

[
erf(X) −

2X√
π

e−X2

]
vM , (8.6)

where X ≡ vM/(
√

2σ) and erf is the error function (Appendix C.3). This
important formula illustrates two features of dynamical friction:
(i) The frictional drag is proportional to the mass density nm of the stars

being scattered, but independent of the mass of each individual star. In
particular, if we replace nm in equation (8.6) by the overall background
density ρ, we obtain a formula that is equally valid for a host system
containing a spectrum of different stellar masses:

dvM

dt
= −

4πG2Mρ ln Λ

v3
M

[
erf(X) −

2X√
π

e−X2

]
vM . (8.7)

(ii) The frictional acceleration is proportional to M and thus the frictional
force must be proportional to M 2. It is instructive to consider why
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this is so. Stars are deflected by M in such a way that the density of
background stars behind M is greater than in front of it (see Figure 8.2
and Problem 8.4). The amplitude of this density enhancement or wake
is proportional to M and the gravitational force that it exerts on M is
proportional to M times its amplitude. Hence the force is proportional
to M2.

The validity of Chandrasekhar’s formula Although Chandrasekhar’s
formula (8.3) was derived for a mass moving through an infinite homogeneous
background, it can be (and usually is) employed to estimate the drag on a
small body traveling through a much larger host system. In such applications
we replace f(v) by the value of the df in the vicinity of the small body, vtyp

by the local velocity dispersion, and bmax by the distance of the subject body
from the center of the host. When employed in this way, Chandrasekhar’s
formula suffers from several internal inconsistencies:
(i) The choices of bmax and vtyp are rather arbitrary.
(ii) We have neglected the self-gravity of the wake. Thus equation (8.3) takes

into account the mutual attraction of M and the background stars, but
neglects the attraction of the background stars for each other.

(iii) We obtained equation (8.3) in the approximation that stars move past
M on Keplerian hyperbolae. Orbits in the combined gravitational fields
of M and the host system would be more complex.

These deficiencies become especially worrisome when M is so large as to be
comparable to the mass of the host system that lies interior to M ’s orbit.
Nevertheless, N-body simulations and linearized response calculations show
that Chandrasekhar’s formula provides a remarkably accurate description of
the drag experienced by a body orbiting in a stellar system, usually within
a factor of two and often considerably better (Weinberg 1989; Fujii, Funato,
& Makino 2006).

The fundamental reasons for this success were discussed in the derivation
of the Fokker–Planck equation in §7.4.2, and derive from the large ratio
between the maximum and minimum impact parameters that contribute to
the Coulomb logarithm ln Λ = ln(bmax/b90). Consider, for example, a black
hole of mass M = 106 M!, orbiting at radius 1 kpc in a galaxy with velocity
dispersion 200 km s−1. Then we may set bmax ≈ 1 kpc and V0 ≈ 200 km s−1,
so b90 = 0.1 pc and ln Λ = 9.2. To address the seriousness of problem (i)
above, suppose that we have overestimated bmax by a factor of two, so the
correct value is only half the orbital radius or 0.5 kpc; then ln Λ = 8.5, a
change of less than 10%. In words, the drag force is insensitive to changes
of order unity in bmax and vtyp, because ln Λ is large. To address problems
(ii) and (iii) we note the effects of self-gravity are important only on scales
comparable to the Jeans length, which in turn is comparable to bmax. Thus
the effects of self-gravity are negligible, and the approximation of a Keplerian
hyperbola should be valid, for encounters with impact parameter much less
than bmax. Suppose then that we consider only encounters with b < 100 pc
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or 10% of the orbital radius. The contribution to the Coulomb logarithm
from these encounters is ln(100 pc/b90) = 5.5, a difference of only 25% from
our original estimate. In words, most of the total contribution to the drag
comes from encounters with sufficiently small impact parameters that the
neglect of self-gravity and the approximation of Keplerian orbits introduce
negligible errors.

A more sophisticated treatment of dynamical friction that avoids the
inconsistencies of Chandrasekhar’s formula requires the machinery of linear
response theory that was developed in §5.3. The subject body is regarded as
an external potential Φe(x, t) that excites a response density in the host sys-
tem, governed by the response function R(x,x′, τ). We then solve Poisson’s
equation to determine the gravitational potential generated by the response
density, and the force exerted on the subject body by this response potential
is dynamical friction (Weinberg 1986, 1989).

Like Landau damping, dynamical friction illustrates the curious fact
that irreversible processes can occur in a system with reversible equations
of motion. We have seen in §5.5.3 that Landau damping in spherical stellar
systems arises from resonances between the oscillations of the system and
the orbital frequencies of individual stars. Similarly, dynamical friction can
be shown to arise from resonances between the orbital frequencies of the
subject body and the stars (Tremaine & Weinberg 1984b). The rich Fourier
spectrum of the gravitational potential from an orbiting point mass ensures
that many orbital resonances contribute to the drag force, and the cumulative
effect of these many weak resonances gives rise to the Coulomb logarithm in
Chandrasekhar’s formula.

8.1.1 Applications of dynamical friction

(a) Decay of black-hole orbits The centers of galaxies often contain
black holes with masses 106–109M! (§1.1.6). It is natural to ask whether
such objects could be also be present at other locations in the galaxy, where
they would be even harder to find. To investigate this question, we imagine
a black hole of mass M on a circular orbit of radius r, and ask how long is
needed for dynamical friction to drag the black hole to the galaxy center.

The flatness of many observed rotation curves suggests that we approx-
imate the density distribution by a singular isothermal sphere (eq. 4.103),

ρ(r) =
v2
c

4πGr2
, (8.8)

where vc =
√

2σ is the constant circular speed (eq. 4.104). The df of the
isothermal sphere is Maxwellian, so equation (8.7) gives the frictional force
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F̃ = M |dvM/dt| on the black hole:

F̃ =
4πG2M2ρ(r) ln Λ

v2
c

[
erf(X) −

2X√
π

e−X2

]

= 0.428 lnΛ
GM2

r2
,

(8.9)

where X = vc/(
√

2σ) = 1.
This force is tangential and directed opposite to the velocity of the black

hole, causing it to lose angular momentum L̃ at a rate

dL̃

dt
= −F̃ r ! −0.428 lnΛ

GM2

r
. (8.10)

Thus the black hole spirals towards the center of the galaxy, while remain-
ing on a nearly circular orbit. Since the circular-speed curve of the singular
isothermal sphere is flat, the black hole continues to orbit at speed vc as it
spirals inward, so its angular momentum at radius r is L̃ = Mrvc. Substi-
tuting the time derivative of this expression into equation (8.10), we obtain

r
dr

dt
= −0.428 lnΛ

GM

vc
= −0.302 lnΛ

GM

σ
. (8.11)

If we neglect the slow variation of ln Λ with radius, we can solve this differ-
ential equation subject to the initial condition that the radius is ri at zero
time. We find that the black hole reaches the center after a time4

tfric =
1.65

ln Λ

r2
i σ

GM
=

19 Gyr

ln Λ

(
ri

5 kpc

)2 σ

200 km s−1

108 M!

M
. (8.12)

This equation can be cast into a simpler form using the crossing time tcross =
ri/vc, the time required for the subject body to travel one radian,

tfric =
1.17

ln Λ

M(r)

M
tcross, (8.13)

where M(r) = v2
c r/G is the mass of the host galaxy contained within radius

r. This result is approximately correct even for mass distributions other
than the singular isothermal sphere; in words, if the ratio of the mass of the
subject body to the interior mass of the host is µ ' 1, then the subject body
spirals to the center of the host in roughly 1/(µ ln Λ) initial crossing times.

For characteristic values bmax ≈ 5 kpc, M = 108 M!, and vtyp ≈ σ =
200 km s−1, we have by equation (8.1b) that ln Λ ! 6. Thus for the standard

4 Equation (8.8) overestimates the density inside the galaxy’s core, but this leads to a
negligible error in the inspiral time, since the decay is rapid at small radii anyway.
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parameters in equation (8.12), the inspiral time tfric is only 3 Gyr. Black holes
on eccentric orbits have even shorter inspiral times than those on circular
orbits with the same mean radius, since the eccentric orbit passes through
regions of higher density where the drag force is stronger. We conclude that
any 108 M! black hole that is formed within ∼ 10 kpc of the center of a
typical galaxy will spiral to the center within the age of the universe. Thus
massive black holes should normally be found at the center of the galaxy,
unless they are far out in the galactic halo.

(b) Galactic cannibalism Most large galaxies are accompanied by sev-
eral satellite galaxies, small companion galaxies that travel on bound orbits
in the gravitational potential of the larger host. The satellites of our own
Milky Way galaxy include the Sagittarius dwarf galaxy, the Large and Small
Magellanic Clouds (§1.1.3 and Plate 11), and several dozen even smaller
galaxies at distances of ∼ 100–300 kpc. Two satellite galaxies of the nearby
disk galaxy M31 appear in Plate 3.

Satellites orbiting within the extended dark halo of their host experience
dynamical friction, leading to orbital decay. As the satellite orbit decays,
tidal forces from the host galaxy (§8.3) strip stars from the outer parts of
the satellite, until eventually the entire satellite galaxy is disrupted—this
process, in which a galaxy consumes its smaller neighbors, is an example of
a minor merger, or, more colorfully, galactic cannibalism.

The rate of orbital decay for a satellite of fixed mass M is described
approximately by equation (8.12). This formula does not, however, allow for
mass loss due to tidal stripping as the satellite spirals inward. To account
crudely for this process, we shall refer forward to §8.3, in which we show that
the outer or tidal radius of a satellite is given approximately by its Jacobi
radius rJ, defined by equation (8.91). Once again we assume that the host
galaxy is a singular isothermal sphere, so its mass interior to radius r is
M(r) = v2

Mr/G = 2σ2
Mr/G, where vM and σM = vM/

√
2 are the circular

speed and velocity dispersion of the host; in this case equations (8.91) and
(8.108) yield

rJ =

(
M

2M(r)

)1/3

r =

(
GMr2

4σ2
M

)1/3

. (8.14)

We shall assume that the satellite galaxy is also a singular isothermal sphere,
but one that is sharply truncated at rJ. Thus the total mass of the satellite is
M = 2σ2

s rJ/G, where σs is its velocity dispersion. (A truncated isothermal
sphere is not a self-consistent solution of the collisionless Boltzmann and
Poisson equations, so this should be regarded as a fitting formula without
much dynamical significance.) Equation (8.14) then yields

rJ =
σs√
2σM

r which implies that M =

√
2σ3

s r

GσM
. (8.15)
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Substituting into equation (8.11), we obtain the rate of orbital decay,

dr

dt
= −0.428 lnΛ

σ3
s

σ2
M

, (8.16)

and neglecting the slow variation in ln Λ with radius, we find the inspiral
time from radius ri to be

tfric =
2.34

ln Λ

σ2
M
σ3

s

ri

=
2.7 Gyr

ln Λ

ri

30 kpc

( σM

200 km s−1

)2
(

100 km s−1

σs

)3

.

(8.17)

To evaluate the Coulomb logarithm, we use equation (8.2). The half-mass
radius rh of the satellite is half of its Jacobi radius, and the typical velocity
may be taken to be vtyp = σM. Then the two quantities in the denominator
of equation (8.2) are given by equations (8.15),

rh =
σs

23/2σM
r ;

GM

v2
typ

=

√
2σ3

s

σ3
M

r. (8.18)

The velocity dispersion of a galaxy is correlated with its mass through the
Faber–Jackson law (1.21). Satellite galaxies have smaller luminosities than
their hosts, and hence smaller dispersions. If σs ∼< 0.5σM, the first term in
equation (8.18) is larger than the second, so the argument of the Coulomb
logarithm is Λ = bmax/rh; setting bmax = r we have finally Λ = 23/2σM/σs.
Thus, for example, equation (8.17) implies that in a host galaxy with disper-
sion 200 km s−1, a satellite galaxy with dispersion σ ∼> 50 km s−1 will merge
from a circular orbit with radius 30 kpc within 10 Gyr.

(c) Orbital decay of the Magellanic Clouds In general, the orbits of
satellites of the Milky Way cannot be determined, because their velocities
perpendicular to the line of sight are either unknown or have large obser-
vational uncertainties. However, much more information is available for the
Large and Small Magellanic Clouds. Not only do we have good estimates for
their velocities perpendicular to the line of sight (Kallivayalil et al. 2006),
but the correct Cloud orbits must be able to reproduce the dynamics of the
Magellanic Stream, a narrow band of neutral hydrogen gas that extends over
120◦ in the sky and is believed to have been torn off the Small Cloud by the
gravitational field of the Galaxy about 1–1.5 Gyr ago. (See BM §8.4.1 and
Putman et al. 2003 for a description of the observations.)

Several groups have modeled the dynamics of the Magellanic Stream
and the resulting constraints on the Cloud orbits (Murai & Fujimoto 1980;
Lin & Lynden–Bell 1982; Gardiner, Sawa, & Fujimoto 1994; Connors et al.
2004). They find that the orbital plane of the Clouds is nearly perpendicular
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Figure 8.3 The decay of the orbits of the Magellanic Clouds around our Galaxy. The
upper curves show the radius of the Clouds from the Galactic center (thick line for the
Large Cloud and thin line for the Small Cloud), and the lower, dashed curve shows the
distance between the Large and Small Cloud. The Galaxy potential is that of a singular
isothermal sphere with circular speed vc = 220 km s−1, and the drag force is computed
using Chandrasekhar’s formula (8.7). The initial conditions at t = 0 are chosen to repro-
duce the observed distances and radial velocities of the Clouds and the kinematics of the
Magellanic Stream (Gardiner, Sawa, & Fujimoto 1994).

to the Galactic plane; the sense of the orbit is such that the Clouds are
approaching the Galactic plane with the Magellanic Stream trailing behind;
the orbit is eccentric (the apocenter/pericenter distance is ∼> 2); and the
Clouds are presently near pericenter (Figure 8.3). As seen in the figure, the
orbits of the Magellanic Clouds are decaying due to dynamical friction. The
ongoing mass loss from the Clouds that generates the Magellanic Stream
provides circumstantial evidence that the orbit is continuing to shrink.

In this model the Clouds merge with the Milky Way in about 6 Gyr,
although the model is unrealistic beyond about 3 Gyr in the future, when
the Galaxy experiences a much more violent merger with M31 (Box 3.1).

(d) Dynamical friction on bars Dynamical friction can be generated
by any time-varying large-scale gravitational field. An important example is
the interaction between a bar in a disk galaxy and the surrounding dark halo.
As a first approximation, let us think of the bar as a rigid body, consisting
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of two masses M at the ends of a rod of length 2r that revolves around
its center at the bar pattern speed Ωb. In a strong bar M would not be
much smaller than the mass of the galaxy interior to r. In this circumstance
equation (8.13) suggests that the bar should lose its angular momentum in a
few crossing times, which is much shorter than the age of the galaxy. Thus
we might expect that bars in disk galaxies with massive halos would have
zero angular momentum and zero pattern speed.

Improving on this crude model is a challenging analytic task, for sev-
eral reasons: first, the gravitational potential of a bar is more complicated
than the potential from a point mass; second, in contrast to most orbiting
bodies, bars are extended objects, so the friction is not dominated by local
encounters; third, dynamical friction exerts a torque on the bar but we do
not understand the reaction of the bar to that torque: does its pattern speed
increase or decrease? does the bar grow stronger or weaker? etc.

Accurate analytic determinations of the frictional torque on a bar from
the dark halo can be derived using perturbation theory (Weinberg 1985),
but N-body simulations can be more informative because they determine
both the torque on the bar and its resulting evolution. Simulations confirm
that the halo exerts a strong frictional torque on the bar, and show that in
response the bar pattern speed rapidly decays but the bar remains intact
(Sellwood 1980; Hernquist & Weinberg 1992; Debattista & Sellwood 1998,
2000).

These theoretical results imply that if massive dark halos are present in
the inner parts of barred galaxies, bars should rotate slowly. However, this
conclusion is inconsistent with observations: as we saw in §6.5.1a the ratio R
of the corotation radius to the bar semi-major axis (eq. 6.103) generally lies
in the range 0.9–1.3, where R ! 1 is the maximum allowed rotation rate for
a weak bar. This problem can be resolved if spiral galaxies have maximum
disks (§6.3.4), for then the halo mass is relatively small in the inner few kpc,
where interactions with the bar are strongest.

(e) Formation and evolution of binary black holes Since most galax-
ies contain black holes at their centers, it is natural to ask what happens to
the black holes when a satellite galaxy merges with a larger host.

As the satellite’s orbit decays, its stars are stripped by tidal forces that
become stronger and stronger as the orbit shrinks (eq. 8.15), until eventually
only its central black hole is left. The orbit of the black hole continues to
decay from dynamical friction, although at a slower rate since the mass of
the black hole is only a small fraction of the mass of the original satellite
galaxy. Assuming that the host galaxy also contains a central black hole, we
expect that eventually the two black holes will form a bound binary system.

After the black-hole binary is formed, its orbit continues to decay by dy-
namical friction. Equation (8.3) still describes the drag acting on each black
hole, with the maximum impact parameter bmax appearing in the Coulomb
logarithm now equal to the binary semi-major axis a.
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As the binary orbit shrinks, the relative orbital velocity v of the two
black holes grows. Eventually the orbital velocity greatly exceeds the velocity
dispersion σ of the stars in the galaxy. For a circular orbit, this occurs when
the binary semi-major axis a satisfies

G(M1 + M2)

a
% σ2 or a ' 10 pc

M1 + M2

108 M!

(
200 km s−1

σ

)2

, (8.19)

where M1 and M2 are the masses of the black holes. Following the discussion
in §7.5.7, we shall say that the black-hole binary is hard when v > σ.

For hard binaries Chandrasekhar’s dynamical friction formula is no
longer valid, but an approximate formula for the rate of orbital decay can be
derived by arguments similar to those used to derive the hardening rate for
binary stars in equation (7.179). These yield (Quinlan 1996b)

d

dt

(
1

a

)
= −C

Gρ

σ
, C = 14.3, (8.20)

where ρ is the density of stars in the vicinity of the binary. This result is
almost independent of the eccentricity of the binary and depends only weakly
on the mass ratio M2/M1 so long as it is not too far from unity.5

Under the assumption that the galaxy has a constant-density core, we
can integrate equation (8.20) to obtain 1/a = constant −CGρt/σ. Choosing
the origin of time so that the constant is zero, we obtain a = σ/(CGρt).
The King radius of the galaxy, r0, is related to ρ and σ via 4πGρr2

0 = 9σ2

(eq. 4.106). Eliminating ρ with the help of this equation, we have finally

a(t) =
4πr2

0

9Cσt
= 0.005 pc

200 km s−1

σ

(
r0

100 pc

)2 Gyr

t
. (8.21)

Thus interactions with stars in the host galaxy can drive the black-hole
binary to semi-major axes as small as a few milliparsecs; the corresponding
relative speed for a circular orbit is

v =

√
G(M1 + M2)

a
= 2.1 × 104 km s−1

(
M1 + M2

108 M!

10−3 pc

a

)1/2

. (8.22)

There is an important case in which this analysis fails. Only stars with
angular momentum L ∼< [G(M1 +M2)a]1/2 interact strongly with the binary,
and if the binary semi-major axis a is much smaller than the King radius r0

then this is much smaller than the typical angular momentum L ∼ r0σ of

5 The numerical coefficient differs from the one in equation (7.179) because here the
binary components are much more massive than the field stars, while in equation (7.179)
the binary components and the field stars all have the same mass.
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stars in the core. Thus, only a small fraction of the stars in the core interact
strongly with the black holes. The region in phase space with such small
angular momentum is called the loss cone, by analogy with the loss cone
from which stars are consumed by a single black hole (§7.5.9). The mass of
stars in the loss cone shrinks as the binary semi-major axis decreases, and
eventually may become smaller than the black-hole mass. In this case the
binary can empty the loss cone, and the shrinkage of the semi-major axis will
stall. Once the loss cone has been emptied, the rate of continued evolution
is much less certain, being determined by the rate at which the loss cone is
slowly refilled by two processes: diffusion of angular momentum due to two-
body relaxation (Chapter 7), or torques from the host galaxy, if its overall
mass distribution is non-spherical (Yu 2002; Makino & Funato 2004).

If the binary semi-major axis shrinks far enough, gravitational radiation
takes over as the dominant cause of orbital decay. A binary black hole on
a circular orbit with semi-major axis a will coalesce under the influence of
gravitational radiation in a time (Peters 1964)

tgr =
5c5a4

256G3M1M2(M1 + M2)

= 5.81 Myr

(
a

0.01 pc

)4 (
108 M!

M1 + M2

)3
(M1 + M2)2

M1M2
.

(8.23)

The characteristic decay time due to gravitational radiation therefore scales
as a4. In contrast, the decay time (d ln a/dt)−1 due to dynamical friction
varies as 1/a. Consequently, the actual decay time, which is set by the more
efficient of the two processes, has a maximum at the semi-major axis where
the two decay times are equal (Begelman, Blandford & Rees 1980). This
radius is referred to as the bottleneck radius, and lies between 0.003 pc
and 3 pc depending on the galaxy density distribution and black-hole masses
(Yu 2002). The bottleneck radius is where binary black holes are most likely
to be found.

The decay time at the bottleneck is quite uncertain, since it depends
on both the extent to which the loss cone is depopulated, and the possible
contribution of gas drag. If the bottleneck decay time exceeds 10 Gyr, most
galaxies should contain binary black holes at their centers. If the decay
time is less than 10 Gyr, most black-hole binaries will eventually coalesce.
Coalescing black holes are of great interest because they generate strong
bursts of gravitational radiation that should ultimately be detectable, even
at cosmological distances, and thus provide a unique probe of both galaxy
evolution and general relativity.

(f) Globular clusters These systems may experience significant orbital
decay from dynamical friction. The rate of decay and inspiral time can be
described approximately by equations (8.11) and (8.12). For a typical cluster
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mass M = 2 × 105 M! (Table 1.3) the inspiral time from radius ri is

tfric = 64 Gyr
σ

200 km s−1

(
ri

1 kpc

)2

, (8.24)

where σ is the velocity dispersion of the host galaxy and we have assumed
ln Λ = 5.8, from equation (8.2) with bmax = 1 kpc and rh = 3 pc (Table 1.3).
Orbital decay is most important for low-luminosity host galaxies, which have
small radii and low velocity dispersions. Many dwarf elliptical galaxies ex-
hibit a deficit of clusters near their centers and compact stellar nuclei, which
may arise from the inspiral and merger of these clusters (Lotz et al. 2001).
A puzzling exception is the Fornax dwarf spheroidal galaxy, a satellite of the
Milky Way, which contains five globular clusters despite an estimated inspi-
ral time of only tfric ∼ 1 Gyr (Tremaine 1976a). Why these clusters have not
merged at the center of Fornax remains an unsolved problem.

8.2 High-speed encounters

One of the most important classes of interaction between stellar systems
is high-speed encounters. By “high-speed” we mean that the duration of
the encounter—the interval during which the mutual gravitational forces are
significant—is short compared to the crossing time within each system. A
typical example is the collision of two galaxies in a rich cluster of galaxies
(§1.1.5). The duration of the encounter is roughly the time it takes the two
galaxies to pass through one another; given a galaxy size r ∼ 10 kpc and the
typical encounter speed in a rich cluster, V ≈ 2000 km s−1, the duration is
r/V ≈ 5 Myr. For comparison the internal dispersion of a large galaxy is
σ ≈ 200 km s−1 so the crossing time is r/σ ≈ 50 Myr, a factor of ten larger.

As we saw at the beginning of this chapter, the effect of an encounter
on the internal structure of a stellar system decreases as the encounter speed
increases. Hence high-speed encounters can be treated as small perturbations
of otherwise steady-state systems.

We consider an encounter between a stellar system of mass Ms, the
subject system, and a passing perturber—a galaxy, gas cloud, dark halo,
black hole, etc.—of mass Mp. At the instant of closest approach, the centers
of the subject system and the perturber are separated by distance b and have
relative speed V . If the relative speed is high enough, then:
(i) The kinetic energy of relative motion of the two systems is much larger

than their mutual potential energy, so the centers travel at nearly uni-
form velocity throughout the encounter.

(ii) In the course of the encounter, the majority of stars will barely move
from their initial locations with respect to the system center. Thus the
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gravitational force from the perturber can be approximated as an im-
pulse of very short duration, which changes the velocity but not the po-
sition of each star. A variety of analytic arguments (see page 658) and
numerical experiments (Aguilar & White 1985) suggest that this im-
pulse approximation yields remarkably accurate results, even when
the duration of the encounter is almost as long as the crossing time.6

We now ask how the structure of the subject system is changed by the passage
of the perturber. We work in a frame that is centered on the center of mass
of the subject system before the encounter. Let mα be the mass of the αth
star of the subject system, and let v̇′

α be the rate of change in its velocity
due to the force from the perturber. We break v̇′

α into two components. The
component that reflects the rate of change of the center-of-mass velocity of
the subject system is

v̇cm ≡
1

Ms

∑

β

mβv̇′
β , where Ms ≡

∑

β

mβ (8.25a)

is the mass of the subject system. The component

v̇α ≡ v̇′
α − v̇cm (8.25b)

gives the acceleration of the αth star with respect to the center of mass.
Let Φ(x, t) be the gravitational potential due to the perturber. Then

v̇′
α = −∇Φ(xα, t), (8.26)

and equation (8.25b) can be written

v̇α = −∇Φ(xα, t) +
1

Ms

∑

β

mβ∇Φ(xβ , t). (8.27)

In the impulse approximation, xα is constant during an impulsive en-
counter, so

∆vα =

∫ ∞

−∞
dt v̇α =

∫ ∞

−∞
dt

[
−∇Φ(xα, t)+

1

Ms

∑

β

mβ∇Φ(xβ , t)

]
. (8.28)

The potential energy of the subject system does not change during the en-
counter, so in the center-of-mass frame the change in the energy, Ẽ, is simply

6 Condition (ii) almost always implies condition (i), but condition (i) need not imply
condition (ii): for example, a star passing by the Sun at a relative velocity v ! 50 km s−1

and an impact parameter b ! 0.01 pc will hardly be deflected at all and hence satisfies
condition (i). However, the encounter time b/v ! 200 yr is much larger than the orbital
period of most of the planets so the encounter is adiabatic, rather than impulsive.
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the change in the internal kinetic energy, K̃. Here tildes on the symbols are
a reminder that these quantities have units of mass×(velocity)2, in contrast
to the usual practice in this book where E and K denote energy per unit
mass. We have

∆Ẽ = ∆K̃ = 1
2

∑

α

mα

[
(vα + ∆vα)2 − v2

α

]

= 1
2

∑

α

mα

[
|∆vα|2 + 2vα · ∆vα

]
.

(8.29)

In any static axisymmetric system,
∑

α mαvα · ∆vα = 0 by symmetry (see
Problem 8.5). Thus the energy changes that are first-order in the small
quantity ∆v average to zero, and the change of internal energy is given by
the second-order quantity

∆Ẽ = ∆K̃ = 1
2

∑

α

mα|∆vα|2. (8.30)

This simple derivation masks several subtleties:

(a) Mass loss Equation (8.29) shows that the encounter redistributes a
portion of the system’s original energy stock: stars in which vα · ∆vα > 0
gain energy, while those with vα · ∆vα < 0 may lose energy. The energy
gained by some stars may be so large that they escape from the system,
and then the overall change in energy of the stars that remain bound can be
negative. Thus the energy per unit mass of the bound remnant system may
decrease (become more negative) as the result of the encounter, even though
the encounter always adds energy to the original system.

(b) Return to equilibrium After the increments (8.28) have been added
to the velocities of all the stars of the subject system, it no longer satisfies the
virial theorem (4.250). Hence the encounter initiates a period of readjust-
ment, lasting a few crossing times, during which the subject system settles
to a new equilibrium configuration.

If the perturbation is weak enough that no stars escape, some properties
of this new equilibrium can be deduced using the virial theorem. Let the
initial internal kinetic and total energies be K̃0 and Ẽ0, respectively. Then
the virial theorem implies that

K̃0 = −Ẽ0. (8.31)

Since the impulsive encounter increases the kinetic energy by ∆K̃ and leaves
the potential energy unchanged, the final energy is

Ẽ1 = Ẽ0 + ∆K̃. (8.32)
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Once the subject system has settled to a new equilibrium state, the final
kinetic energy is given by the virial theorem,

K̃1 = −Ẽ1 = −(Ẽ0 + ∆K̃) = K̃0 − ∆K̃. (8.33)

Thus if the impulsive encounter increases the kinetic energy by ∆K̃, the
subsequent relaxation back to dynamical equilibrium decreases the kinetic
energy by 2∆K̃!

(c) Adiabatic invariance The impulse approximation is valid only if
the encounter time is short compared to the crossing time. In most stellar
systems the crossing time is a strong function of energy or mean orbital
radius, so the impulse approximation is unlikely to hold for stars near the
center. Indeed, sufficiently close to the center, the crossing times of most
stars may be so short that their orbits deform adiabatically as the perturber
approaches (§3.6.2c). In this case, changes that occur in the structure of the
orbits as the perturber approaches will be reversed as it departs, and the
encounter will leave most orbits in the central region unchanged.

If we approximate the potential near the center of the stellar system
as that of a harmonic oscillator with frequency Ω, then the energy change
imparted to the stars in an encounter of duration τ is proportional to
exp(−αΩτ) for Ωτ % 1, where α is a constant of order unity (see §3.6.2a).
However, this strong exponential dependence does not generally hold in re-
alistic stellar systems. The reason is that some of the stars are in resonance
with the slowly varying perturbing force, in the sense that m·Ω ! 0 where the
components of Ω(J) are the fundamental frequencies of the orbit (eq. 3.190),
and m is an integer triple. At such a resonance, the response to a slow
external perturbation is large—in the language of Chapter 5, the polariza-
tion matrix diverges (eq. 5.95). A careful calculation of the contribution of
both resonant and non-resonant stars shows that the total energy change
in an encounter generally declines only as (Ωτ)−1 for Ωτ % 1, rather than
exponentially (Weinberg 1994a).

8.2.1 The distant-tide approximation

The calculation of the effects of an encounter simplifies considerably when
the size of the subject system is much less than the impact parameter.

Let Φ(x, t) be the gravitational potential of the perturber, in a frame in
which the center of mass of the subject system is at the origin. When the
distance to the perturber is much larger than the size of the subject system,
the perturbing potential will vary smoothly across it, and we may therefore
expand the field −∇Φ(x, t) in a Taylor series about the origin:

−
∂Φ

∂xj
(x, t) = −Φj(t) −

∑

k

Φjk(t)xk + O(|x|2), (8.34a)
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where x = (x1, x2, x3) and

Φj ≡
∂Φ

∂xj

∣∣∣∣
x=0

; Φjk ≡
∂2Φ

∂xj∂xk

∣∣∣∣
x=0

. (8.34b)

Dropping the terms O(|x|2) constitutes the distant-tide approximation.
Encounters for which the both the distant-tide and impulse approximations
are valid are often called tidal shocks.

Substituting into equations (8.25a) and (8.26), we find that Φjk does
not contribute to the center-of-mass acceleration v̇cm, because the center of
mass is at the origin so

∑
β mβxβ = 0. Similarly, substituting (8.34a) into

(8.27), we find that Φj does not contribute to v̇α because
∑

β mβ = Ms.
Thus

v̇α = −
3∑

j,k=1

êjΦjkxαk. (8.35)

If the perturber is spherical and centered at X(t), we may write Φ(x, t) =
Φ (|x − X(t)|) and (cf. Box 2.3)

Φj = −Φ′Xj

X
; Φjk =

(
Φ′′ −

Φ′

X

)
XjXk

X2
+

Φ′

X
δjk, (8.36)

where X = |X| and all derivatives of Φ are evaluated at X .
An important special case occurs when the impact parameter is large

enough that we may approximate the perturber as a point mass Mp. Then
Φ(X) = −GMp/X and we have

Φj = −
GMp

X3
Xj ; Φjk =

GMp

X3
δjk −

3GMp

X5
XjXk. (8.37)

Thus the equation of motion (8.35) becomes

v̇α = −
GMp

X3
xα +

3GMp

X5
(X · xα)X. (8.38)

We argued at the beginning of this section that in the impulse approxi-
mation, the orbit of the perturber can be assumed to have constant relative
velocity V. We align our coordinate axes so that V lies along the z axis, and
the perturber’s orbit lies in the yz plane, and choose the origin of time to
coincide with the point of closest approach. Then X(t) = (0, b, V t), where b
is the impact parameter, and we have

v̇α = −
GMpxα

[b2 + (V t)2]3/2
+

3GMp(yαb + zαV t)

[b2 + (V t)2]5/2
(bêy + V têz). (8.39)
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In the impulse approximation, xα is constant during the encounter, so

∆vα =

∫ ∞

−∞
dt v̇α

= GMp

∫ ∞

−∞
dt

{
−

(xα, yα, zα)

[b2 + (V t)2]3/2
+ 3(0, b, V t)

yαb + zαV t

[b2 + (V t)2]5/2

}

=
GMp

b2V

(
− xα

∫ ∞

−∞

du

(1 + u2)3/2
, yα

∫ ∞

−∞
du

2 − u2

(1 + u2)5/2
,

zα

∫ ∞

−∞
du

2u2 − 1

(1 + u2)5/2

)
,

(8.40)
where we have made the substitution u = V t/b. Evaluating the integrals in
equation (8.40), we obtain finally

∆vα =
2GMp

b2V
(−xα, yα, 0). (8.41)

The error introduced in this formula by the distant-tide approximation is of
order |x|/b ' 1. The velocity increments tend to deform a sphere of stars
into an ellipsoid whose long axis lies in the direction of the perturber’s point
of closest approach. This distortion is reminiscent of the way in which the
Moon raises tides on the surface of the oceans.

By equations (8.30) and (8.41) the change in the energy per unit mass
in the distant-tide approximation is (Spitzer 1958)

∆Ẽ =
2G2M2

p

V 2b4

∑

α

mα(x2
α + y2

α). (8.42)

If the subject system is spherical, then
∑

mαx2
α =

∑
mαy2

α = 1
3Ms〈r2〉,

where 〈r2〉 is the mass-weighted mean-square radius of the stars in the subject
system. In this case equation (8.42) simplifies to

∆Ẽ =
4G2M2

pMs

3V 2b4
〈r2〉. (8.43)

Equation (8.43) shows that for large impact parameter b the energy in-
put in tidal shocks varies as b−4. Thus the encounters that have the strongest
effect on a stellar system are those with the smallest impact parameter b,
which unfortunately are also those for which the approximation of a point-
mass perturber is invalid. Fortunately, it is a straightforward numerical
task to generalize these calculations to a spherical perturber with an arbi-
trary mass distribution, using equations (8.30), (8.35), and (8.36) (Aguilar &
White 1985; Gnedin, Hernquist, & Ostriker 1999). Let U(b/rh) be the ratio
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Figure 8.4 Energy input in a tidal
shock due to a perturber with a
Plummer or Hernquist mass distribu-
tion (eqs. 2.44b and 2.67). Here b is
the impact parameter, rh is the half-
mass radius of the Plummer or Hern-
quist model, and U is the ratio of
the energy input to that caused by a
point mass perturber (eq. 8.44). The
integral W =

R
dx U(x)/x3 = 0.5675

for the Plummer model and 1.239 for
the Hernquist model (eq. 8.52).

of the impulsive energy change caused by a perturber of half-mass radius rh

to the input from a point of the same total mass, which is given by (8.43).
Then we have

∆Ẽ =
4G2M2

pMs

3V 2b4
U(b/rh)〈r2〉. (8.44)

Figure 8.4 shows U(x) for the Plummer and Hernquist mass distributions.

8.2.2 Disruption of stellar systems by high-speed encounters

In many cases we are interested in the cumulative effect of encounters on a
stellar system that is traveling through a sea of perturbers. Let us assume
that the perturbers have mass Mp and number density np, and a Maxwellian
df with velocity dispersion σp in one dimension. Similarly, we assume that
the subject system is a randomly chosen member of a population having a
Maxwellian velocity distribution with dispersion σs.

Consider the rate at which the subject system encounters perturbers
at relative speeds in the range (V, V + dV ) and impact parameters in the
range (b, b + db). With our assumption of Maxwellian velocity distributions,
the distribution of relative velocities of encounters is also Maxwellian, with
dispersion (Problem 8.8)

σrel = (σ2
s + σ2

p)1/2. (8.45)

Thus the probability that the subject system and perturber have relative
speed in the given range is

dP =
4πV 2dV

(2πσ2
rel)

3/2
exp

(
−

V 2

2σ2
rel

)
, (8.46)
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and the average rate at which a subject system encounters perturbers with
speed V and impact parameter b is

Ċ = np V 2πb db dP =
2
√

2πnpb db

σ3
rel

exp

(
−

V 2

2σ2
rel

)
V 3dV. (8.47)

In the distant-tide approximation, the energy input to a star is propor-
tional to the square of its radius (eq. 8.42). So we focus on stars in the outer
parts of the subject system, for which we can assume that the gravitational
potential of the subject system is Keplerian. In a Keplerian potential, the
time averaged mean-square radius of an orbit with semi-major axis a and
eccentricity e is (1 + 3

2e2)a2 (Problem 3.9). If the df of the subject sys-
tem is isotropic in velocity space, the average of e2 over all the stars with a
given semi-major axis or energy is 1

2 (Problem 4.8). Thus, if we average over
stars with different orbital phases and eccentricities but the same energy,
〈r2〉 = 7

4a2, and equation (8.44) yields an average change in energy per unit
mass of

〈∆E〉 =
〈∆Ẽ〉
Ms

=
7G2M2

pa2

3V 2b4
U(b/rh). (8.48)

From Figure 8.4 we see that for b % rh, U ! 1 so 〈∆E〉 ∝ b−4 is a steeply
declining function of impact parameter. The frequency of encounters with
impact parameters in the range (b, b+db) is proportional to b db so the rate at
which energy is injected by encounters in this range decreases with increasing
b as db/b3. On the other hand, U rapidly decreases with decreasing b once
b ∼< rh, with the result that encounters with impact parameters b ∼ rh inflict
the most damage.

If the damage from a single encounter with b ∼ rh is not fatal for the
system, we say that we are in the diffusive regime because the effects from
a whole sequence of encounters will accumulate, as in the diffusive relaxation
processes that we discussed in Chapter 7. If, by contrast, a single encounter
at impact parameter b ∼ rh will shatter the system, the damage sustained by
the system will be small until it is disrupted by a single, closest encounter,
and we say that we are in the catastrophic regime.

(a) The catastrophic regime We first determine the largest impact
parameter parameter b1 at which a single encounter can disrupt the system.
Since we are in the catastrophic regime, we may assume that b1 ∼> rh so
the energy per unit mass injected by an encounter at impact parameter b1

is given by equation (8.48) with U(b/rh) ! 1. Equating this to the absolute
value of the energy of an individual star E = −GMs/2a (eq. 3.32), we obtain

1 =
〈∆E〉
|E|

=
14GM2

pa3

3MsV 2b4
1

so b1(V ) = 1.5

(
GM2

pa3

MsV 2

)1/4

. (8.49)
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The rate at which disruptive encounters occur is then given by equation
(8.47):

R ≡
2
√

2πnp

σ3
rel

∫ ∞

0
dV V 3 exp

(
−

V 2

2σ2
rel

) ∫ b1(V )

0
b db

=

√
14

3
π

G1/2npMpa3/2

M1/2
s

.

(8.50)

The disruption time of a subject system with semi-major axis a is

td ! R−1 ! kcat
1

Gρp

(
GMs

a3

)1/2

, (8.51)

where ρp ≡ Mpnp is the mass density of perturbers and kcat is of order unity.
Our analytic treatment yields kcat = 0.15 but Monte-Carlo simulations of
catastrophic disruption suggest that kcat ! 0.07 (Bahcall, Hut, & Tremaine
1985). It is remarkable that the disruption time in the catastrophic regime
is independent of both the velocity dispersion σrel and the mass of individual
perturbers, so long as their overall mass density ρp is fixed.

(b) The diffusive regime In this regime, each encounter imparts a ve-
locity impulse ∆v (eq. 8.28) that satisfies |∆v| ' |v|. The corresponding
change in the energy per unit mass is ∆E = v ·∆v + 1

2 |∆v|2. Thus the dif-
fusion term v ·∆v is much larger than the heating term 1

2 |∆v|2. On the
other hand the direction of the velocity impulse, which depends on the rel-
ative orientation of the star and the perturber, is usually uncorrelated with
the direction of the velocity v of the star relative to the center of mass of the
subject system, which depends on the orbital phase of the star. Thus the
average of the diffusion term over many encounters is zero, while the heat-
ing term systematically increases the energy.7 An accurate description of the
evolution of the energy under the influence of many high-speed encounters
requires the inclusion of both terms, using the Fokker–Planck equation that
we described in §7.4.2. Nevertheless, for the sake of simplicity, and since our
estimates will be crude anyway, we focus our attention exclusively on the
heating term.

Combining equations (8.47) and (8.48), we find that the rate of energy
increase for stars with semi-major axis a is

Ė = Ċ 〈∆E〉

=
14

3

√
2π

G2M2
pnpa2

σ3
rel

∫ ∞

0
dV V exp

(
−

V 2

2σ2
rel

) ∫
db

b3
U(b/rh)

=
14

3

√
2π

G2M2
pnpa2

σrelr2
h

W, where W ≡
∫

dx

x3
U(x).

(8.52)

7 This argument is similar to, but distinct from, the argument leading from equa-
tion (8.29) to equation (8.30), which involved an average over the effects of a single col-
lision on many stars rather than an average over the effect of many collisions on a single
star.
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In general, W must be evaluated numerically for a given mass model. For
a Plummer model, W = 0.5675 and for a Hernquist model W = 1.239
(Figure 8.4).

For point-mass perturbers, U(x) = 1, and the heating rate is

Ė =
14

3

√
2π

G2M2
pnpa2

σrel

∫
db

b3
. (8.53)

This integral over impact parameter diverges at small b. In practice, the
distant-tide approximation fails when the impact parameter is comparable
to the size of the subject system, so the integration should be cut off at this
point.

Comparing the heating rate (8.52) to the energy of an individual star
E = − 1

2GMs/a, we obtain the time required for the star to escape:

td !
|E|
Ė

!
0.043

W

σrelMsr2
h

GM2
pnpa3

. (8.54)

For point-mass perturbers, we use equation (8.53), with the integration over
impact parameter cut off at bmin:

td !
|E|
Ė

! 0.085
σrelMsb2

min

GM2
pnpa3

. (8.55)

These are only approximate estimates. A more accurate treatment would
employ the Fokker–Planck equation (7.123); in this equation the diffusion
coefficient D[∆E] is the quantity here called Ė, and the diffusion coefficient
D[(∆E)2] would be computed similarly as the rate of change of the mean-
square energy. Generally this treatment gives a half-life for a star with a
given semi-major axis that is a few times shorter than the estimate (8.54).

(c) Disruption of open clusters The masses of open clusters lie in the
range 102 M! ∼< Mc ∼< 104 M!, and their half-mass radii and internal veloc-
ity dispersions are rh,c ≈ 2 pc and σc ≈ 0.3 km s−1 (Table 1.3). The crossing
time at the half-mass radius is rh,c/σc ≈ 10 Myr. Much of the interstellar
gas in our Galaxy is concentrated into a few thousand giant molecular
clouds of mass Mgmc ∼> 105 M! and radius rh,gmc ≈ 10 pc. Both open
clusters and molecular clouds travel on nearly circular orbits through the
Galactic disk, with random velocities of order 7 km s−1; thus the dispersion
in relative velocity is σrel !

√
2 × 7 km s−1 ! 10 km s−1 (eq. 8.45). The du-

ration of a cluster-cloud encounter with impact parameter b > rgmc is then
b/σrel ! (b/10 pc)Myr, which is shorter than the cluster crossing time for
b ∼< 100 pc. Thus we may use the impulse approximation to study the effect
of close encounters with molecular clouds on open clusters.

The impact parameter at which a typical encounter with a point-mass
perturber would disrupt the cluster is given by equation (8.49); identifying
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Figure 8.5 The fraction of
nearby open clusters younger
than a given age. The cluster
sample is from Piskunov et al.
(2007). The curve is derived
from a simple theoretical model
in which clusters are born at
a constant rate and the prob-
ability that a cluster survives
for time t is exp(−t/τ) with
τ ! 300 Myr. A Kolmogorov–
Smirnov test (Press et al. 1986)
shows that the two distribu-
tions are statistically indistin-
guishable.

the open cluster with the subject system and the molecular cloud with the
perturber we obtain

b1(σrel) = 15 pc

(
Mgmc

105 M!

)1/2 (
300M!

Mc

)1/4

×
(

a

2 pc

)3/4 (
10 km s−1

σrel

)1/2

.

(8.56)

Since this distance is larger than the cloud size rh,gmc ≈ 10 pc, even when
the semi-major axis is as small as the typical cluster half-mass radius of 2 pc,
the encounters are in the catastrophic regime. Hence the disruption time is
given by equation (8.51):

td ! 250 Myr
kcat

0.07

0.025M! pc−3

ρgmc

(
Mc

300M!

)1/2 (
2 pc

a

)3/2

, (8.57)

where the mean density of gas in molecular clouds is taken to be about half
of the total gas density in the solar neighborhood (see Table 1.1).

This result is quite uncertain, not only because the derivation of equa-
tion (8.57) is highly idealized, but also because of uncertainties in the molec-
ular cloud parameters and the large dispersion in open-cluster parameters.
Nevertheless, the available data suggest that the median lifetime of open
clusters is remarkably close to this simple estimate (Figure 8.5). In fact, it
was the observation that there are few open clusters with ages ∼> 500 Myr
that prompted Spitzer (1958) to argue that clusters might be dissolved by
the very clouds that bring them into the world.

(d) Disruption of binary stars Binary stars can be thought of as clus-
ters with just two members and, like clusters, they can be disrupted by
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encounters with passing perturbers. Obviously the vulnerability of a binary
to disruption is an increasing function of the semi-major axis a of its com-
ponents. Binary semi-major axes are usually measured in terms of the as-
tronomical unit, 1 AU = 1.496× 1011 m = 4.848× 10−6 pc (approximately
the mean Earth-Sun distance; see Appendix A).

First we consider disruption of binaries in the solar neighborhood by
passing stars. We focus on stars—both the binary components and their
perturbers—that have ages comparable to the age of the Galaxy and masses
comparable to that of the Sun, since these contain most of the stellar mass
in the solar neighborhood. The velocity distribution of such stars is triaxial,
but we may approximate this distribution by an isotropic Maxwellian with a
one-dimensional dispersion σ! ! 30 km s−1 (1/

√
3 of the rms velocity, from

Table 1.2). The velocity distribution is the same for single and binary stars,
so the relative dispersion is σrel =

√
2 × 30 km s−1 ! 40 km s−1 (eq. 8.45).

According to equation (8.49), the maximum impact parameter for a
catastrophic encounter between a binary star of total mass Mb and a passing
star of mass Mp is

b1(σrel) ! 1.5a

(
GM2

p

Mbσ2
rela

)1/4

! 0.11a

(
2M!

Mb

104 AU

a

)1/4 (
Mp

1M!

40 km s−1

σrel

)1/2

.

(8.58)

Unless the semi-major axis is so small that the probability of a close en-
counter is negligible, this result shows that b1 ∼< a for solar-type stars in the
solar neighborhood, and thus that the encounters are in the diffusive regime.
The disruption time is given by equation (8.55), setting bmin ∼ a, where the
distant-tide approximation fails; thus (Öpik 1932; Heggie 1975)

td ! kdiff
σrelMb

GM2
pnpa

, (8.59)

where kdiff ≡ 0.085(bmin/a)2. We can refine this estimate by recalling the
discussion of the disruption of soft binaries in §7.5.7a; equation (7.173) in
that section describes the disruption time in the diffusive regime for the
case in which the component stars of the binary have the same mass as
the perturbing stars, so Mb = 2Mp, and the velocity dispersion σ of the
perturbers and the binaries is the same, so σrel =

√
2σ. Equating the two

expressions, we find kdiff ! 0.022/ lnΛ, where Λ ≈ σ2
rela/(GMp). For binaries

with a ∼ 104 AU in the solar neighborhood, this formula yields kdiff ! 0.002,
and Monte Carlo simulations yield a similar value (Bahcall, Hut, & Tremaine
1985). The rather small value of kdiff arises in part because Ė grows as
a2, so the heating rate accelerates as the binary gains energy, and in part
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because close encounters with either member of the binary contribute to the
disruption rate, an effect not accounted for in equation (8.53).

In the solar neighborhood, equation (8.59) yields

td ! 15 Gyr
kdiff

0.002

σrel

40 km s−1

Mb

2M!

(
1M!

Mp

)2 0.05 pc−3

np

104 AU

a
. (8.60)

Thus the upper limit to the semi-major axes of old binary stars in the solar
neighborhood is a ! 2 × 104 AU.

Now consider the effects of molecular clouds. Replacing the perturber
mass Mp in equation (8.58) by the typical cloud mass Mgmc ≈ 105 M!, we
find that the maximum impact parameter for impulsive disruption is

b1(σrel) ! 1.9 pc

(
2M!

Mb

)1/4 ( a

104 AU

)3/4
(

Mgmc

105 M!

30 km s−1

σrel

)1/2

.

(8.61)
We have used a fiducial value σrel = 30 km s−1, which is the sum in quadra-
ture of the dispersions of the stars, σ! ! 30 km s−1, and the clouds, σgmc !
7 km s−1. Since b1 is smaller than the cloud radius rh,gmc ≈ 10 pc, the en-
counters are in the diffusive regime. The disruption time can be estimated
from equation (8.54), using the value W = 0.5675 appropriate for a Plummer
model of the cloud’s density distribution:

td ! 0.075
σrelMbr2

h,gmc

GM2
gmcngmca3

. (8.62)

The cloud parameters Mgmc, ngmc, and rh,gmc are all poorly known. For-
tunately, they enter this equation in terms of the observationally accessible
combinations Σgmc ≡ (M/πr2

h)gmc, the mean surface density of a cloud,
and ρgmc = (Mn)gmc, the mean density of molecular gas. We adopt
Σgmc ! 300M! pc−2 and ρgmc ! 0.025M! pc−3 (Hut & Tremaine 1985).
Thus

td ! 380 Gyr
Mb

2M!

(
104 AU

a

)3
σrel

30 km s−1
. (8.63)

Although this result is subject to substantial uncertainties, together with
equation (8.60) it implies that binaries with semi-major axes ∼> 2×104 AU !
0.1 pc cannot survive in the solar neighborhood for its lifetime of ∼ 10 Gyr,
due to the combined effects of high-speed encounters with molecular clouds
and other stars.

The widest known binary stars in the disk do indeed have separations
of about 0.1 pc (Chanamé & Gould 2004); however, there is little evidence
for or against the cutoff in the binary distribution that we have predicted at
this separation (Wasserman & Weinberg 1987). Binary stars in the stellar
halo appear to exist with even larger separations; such binaries can survive
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because their velocity σrel relative to the disk is much higher, and because
they spend only a fraction of their orbit in the disk, so the disruptive effects
from disk stars and molecular clouds are much weaker (Yoo, Chanamé, &
Gould 2004).

(e) Dynamical constraints on MACHOs One possible constituent
of the dark halo is machos, compact objects such as black holes or non-
luminous stars (§1.1.2). Suppose that machos contribute a fraction fh ∼> 0.5
of the radial force in the solar neighborhood; this is close to the maximum
allowed since the disk contributes a fraction fd = 1−fh ∼> 0.4 (§6.3.3). Then
limits on the optical depth of the dark halo to gravitational lensing (Alcock
et al. 2001; Tisserand et al. 2007) imply that the macho mass

m ∼< 10−7 M! or m ∼> 30M!. (8.64)

In §7.4.4 we showed that encounters between machos and disk stars add
kinetic energy to the disk stars and thereby increase both the velocity dis-
persion and the disk thickness; even if this is the only mechanism that heats
the disk—and we shall see in §8.4 that it is not—the observed dispersion
requires that m ∼< 5–10 × 106 M! (eq. 7.104). We now investigate what
additional constraints can be placed on the macho mass by the effect of
high-speed encounters of machos on binary stars.

We write the number density of machos as n = ρ/m. If the macho

mass is small enough, disruption is in the diffusive regime, and we can use
equation (8.59) to estimate the disruption time:

td,diff ! kdiff
σrelMb

Gmρa
(kdiff ≈ 0.002), (8.65a)

where Mb is the mass of the binary. In the catastrophic regime, the disrup-
tion time is given by equation (8.51):

td,cat ! kcat
M1/2

b

G1/2ρa3/2
(kcat ≈ 0.07). (8.65b)

The transition between these two regimes occurs when the critical impact
parameter b1(σrel) (eq. 8.49) is of order the binary semi-major axis a; how-
ever, a more accurate way to determine the transition is to set the actual
disruption time to

td = min (td,diff , td,cat) (8.66)

and identify the transition with the macho mass mcrit at which td,diff =
td,cat. Thus we find

mcrit =
kdiff

kcat

(
σ2

relMba

G

)1/2

(kdiffkcat ≈ 0.03). (8.67)
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Notice that for m > mcrit, the disruption time td,cat depends on the overall
density contributed by the machos but not their individual masses. Thus the
survival of a given type of binary system either rules out all macho masses
above mcrit and some masses below mcrit (if the system’s age exceeds td,cat)
or does not rule out any masses (if its age is less than td,cat).

To plug in numbers for the solar neighborhood, we use the simple model
for the df of machos in the dark halo that we described on page 584. In
this model the local density of machos is given by equation (7.94), and the
relative dispersion between machos is σrel =

√
2σ = vc, where vc is the

circular speed (eq. 8.45)—this is also roughly the dispersion between the
machos and stars, whether they belong to the disk or the stellar halo. Then

mcrit ! 30M!
kdiff/kcat

0.03

(
Mb

2M!

a

104 AU

)1/2 vc

220 km s−1
. (8.68)

To evaluate the disruption time in the catastrophic regime, m > mcrit, we
use equation (8.65b), and take the local macho density from equation (7.94).
Assuming the solar radius R0 = 8 kpc and the solar circular speed vc = v0 =
220 km s−1, we have

td,cat ! 20 Gyr
0.5

fh

kcat

0.07

(
104 AU

a

)3/2

. (8.69)

For dark-halo fractions fh ! 0.5, the disruption time td,cat is larger than
10 Gyr for semi-major axes a ∼< 1.6 × 104 AU. In the diffusive regime, the
disruption time is even longer. Disk binaries with semi-major axes larger
than this limit are likely to be disrupted by encounters with other disk stars
(eq. 8.59) and so we cannot probe the macho mass with disk binaries. Halo
binaries are much less susceptible to other stars and molecular clouds, be-
cause they spend only a small fraction of their time in the disk, and therefore
might be present with semi-major axes large enough to provide useful con-
straints on the macho population. Thus, if a population of halo binaries with
a ∼> 2 × 104 AU were discovered, we could rule out a substantial contribu-
tion to the local gravitational field for all macho masses exceeding 30M!
(eq. 8.68). Yoo, Chanamé, & Gould (2004) offer evidence that halo bina-
ries exist with semi-major axes as large as a ∼ 105 AU. Together with the
microlensing constraint (8.64) this conclusion, if verified by larger samples,
would virtually rule out machos as a significant constituent of the dark halo
in the solar neighborhood.

(f) Disk and bulge shocks Globular clusters in disk galaxies pass
through the disk plane twice per orbit. As they cross the plane, the gravita-
tional field of the disk exerts a compressive gravitational force which is su-
perposed on the cluster’s own gravitational field, pinching the cluster briefly
along the normal to the disk plane. Repeated pinching at successive passages
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through the disk can eventually disrupt the cluster. This process is known
as disk shocking (Ostriker, Spitzer, & Chevalier 1972).

Let Z ≡ Zcm +z be the height above the disk midplane of a cluster star,
with Zcm(t) the height of the cluster’s center of mass. Then so long as the
cluster is small compared to the disk thickness, we may use the distant-tide
approximation, and equation (8.35) yields

v̇z = −
(

∂2Φd

∂Z2

)

cm

z, (8.70)

where vz = ż is the z-velocity of the star relative to the cluster center.
The gravitational potential arising from a thin disk of density ρd(R, z)

is Φd(R, Z), where (eq. 2.74)

d2Φd

dZ2
= 4πGρd. (8.71)

Thus
v̇z = −4πGρd(R, Zcm)z, (8.72)

where R is the radius at which the cluster crosses the disk.
If the passage of the cluster through the disk is sufficiently fast for the

impulse approximation to hold, z is constant during this passage, and the
velocity impulse is

∆vz =

∫
dt v̇z = −4πGz

∫
dt ρd[R, Zcm(t)]. (8.73)

To a good approximation we can assume that the velocity of the center of
mass of the cluster is constant as it flies through the disk, so Zcm(t) =
Vzt + constant , where Vz is the Z-velocity of the cluster; eliminating the
dummy variable t in favor of Zcm we have

∆vz = −
4πGz

|Vz |

∫
dZcm ρd(R, Zcm) = −

4πGΣd(R)z

|Vz |
, (8.74)

where Σd(R) ≡
∫

dZρd(R, Z) is the surface density of the disk.
From equation (8.30), the energy per unit mass gained by the cluster in

a single disk passage is

∆E = 1
2 〈(∆vz)2〉 =

8π2G2Σ2
d

V 2
z

〈z2〉. (8.75)

If the cluster is spherically symmetric, the average value of z2 for stars at a
given radius r is 1

3r2. As shown on page 662, if the cluster has an ergodic df
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the average value of r2 for stars with a given semi-major axis is 7
4a2. Thus

the energy gain is

∆E =
14π2G2Σ2

da2

3V 2
z

. (8.76)

The cluster passes through the disk twice in each orbital period Tψ, so the
disruption time is

td ! 1
2Tψ

|E|
∆E

= 0.005
MgcV 2

z Tψ

GΣ2
da3

, (8.77)

where we have set E = 1
2GMgc/a, since the potential is Keplerian in the

outer parts of the cluster, where the effect of disk shocking is strongest.8

In the solar neighborhood the Galactic disk has a midplane volume den-
sity ρ ! 0.10M! pc−3, and surface density Σd ! 50M! pc−2 (Table 1.1).
The effective thickness of the disk is h ≡ Σd/ρ ! 500 pc. If we approximate
the potential of the Milky Way as spherically symmetric, with circular speed
vc at all radii, then the mean-square speed of a collection of test particles
such as clusters is 〈V 2〉 = v2

c (Problem 4.35), so if the cluster distribution
is spherical, we expect that 〈V 2

z 〉 = 1
3v2

c ; thus 〈V 2
z 〉1/2 ! 130 km s−1 for

vc ! 220 km s−1. Equation (8.77) can be rewritten

td ! 340 Gyr
Mgc

2 × 105 M!

Tψ

200 Myr

×
(

Vz

130 km s−1

)2 (
50M! pc−2

Σd

)2 (
10 pc

a

)3

.

(8.78)

This result is based on the impulse approximation, whose validity we must
check. The duration of the encounter of the cluster with the disk is τ ≈
h/Vz ! 4 Myr for Vz ! 130 km s−1 and h ! 500 pc. The crossing time in
the outer parts of the cluster is roughly the inverse of the orbital frequency,
(a3/GMgc)1/2 ! 1 Myr (a/10 pc)3/2 for a cluster mass of 2 × 105 M!. Thus
the impulse approximation is valid only in the outer parts of the cluster,
a ∼> 30 pc, and at these semi-major axes the disruption time is ∼< 10 Gyr. We
conclude that disk shocks can lead to substantial erosion of the outermost
stars in a typical globular cluster orbiting at the solar radius. For clusters
orbiting at smaller radii, disk shocks are even more important, since the
orbital time is shorter and the disk surface density is larger.

Bulge shocking is a closely related process. Here the rapidly changing
external gravitational field arises as a cluster on a highly eccentric orbit

8 A subtle but important assumption in deriving this result is that the orbital phase
and thus the value of the height z is uncorrelated between successive disk passages. This
assumption is plausible because the interval between successive disk passages is likely to
vary considerably for an eccentric, inclined cluster orbit in a realistic disk galaxy potential.
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plunges through the bulge of a disk galaxy or the dense center of an elliptical
galaxy. In this case the use of the term “shock” is less apt, since the duration
of the encounter is not very short compared to the crossing time, even in the
outer parts of the cluster, and the impulse approximation is not strictly
valid. Nevertheless, the results are similar: the encounters systematically
pump energy into the stars in the outer cluster, leading to the escape of
stars and the eventual dissolution of the cluster.

The evolution of the globular-cluster population under the influence of
disk and bulge shocks is described in §7.5.6.

(g) High-speed interactions in clusters of galaxies The study of
galaxies in clusters provides unique insights into galaxy formation and evo-
lution, not only because many dynamical processes are stronger and more
obvious in the high-density cluster environment, but also because clusters can
be detected at high redshift, enabling the evolution of the galaxy population
to be studied directly.

The relative velocities between galaxies in a rich cluster, ∼ 2000 km s−1,
are so large that collisions of galaxies last only a few Myr, far less than the
crossing time in the galaxy, so they can be treated by the impulse approxi-
mation. We model the cluster as a singular isothermal sphere, with density
ρ(r) = σ2/(2πGr2) (eq. 4.103). In clusters the galaxies and dark matter have
a similar distribution, so it is reasonable to assume that the ratio M! ≡ ρ/n
of the mass density to the galaxy number density—in other words the mass
per galaxy—is constant. (Note that this is not necessarily the mass of the
galaxy, since most of the mass is probably spread uniformly through the
cluster and is not associated with any individual galaxies.) We focus on
galaxies with the characteristic luminosity L! = 2.9×1010 L! in the R band
(eq. 1.18). The mass-to-light ratio in rich clusters is ΥR ≈ 200Υ! (eq. 1.25)
so the mass associated with each L! galaxy is

M! = ΥRL! ≈ 6 × 1012 M!. (8.79)

Consequently, the number density of L! galaxies is

n(r) =
ρ(r)

M!
=

σ2

2πGM!r2
. (8.80)

Now let us estimate the rate at which a given galaxy encounters other
galaxies. The velocity dispersion in clusters is so high that gravitational
focusing is negligible, so if galaxies are deemed to collide when their centers
come within a collision radius rcoll, then from equation (7.194) the collision
time is given by

1

tcoll
= 4

√
πnσr2

coll !
2√
π

σ3r2
coll

GM!r2
. (8.81)
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After replacing rcoll with 2rh, where rh is the galaxy radius, equation (8.81)
yields

tcoll ! 0.2
GM!r2

σ3r2
h

! 6 Gyr

(
800 km s−1

σ

)3 (
20 kpc

rh

r

0.5 Mpc

)2 M!

5 × 1012 M!
.

(8.82)
Thus the stellar component of a galaxy in the central 0.5 Mpc of a rich cluster
is likely to have suffered at least one close encounter with another galaxy.
What are the consequences of such encounters?

As we have seen, high-speed collisions between galaxies have only a
small effect on the distribution of stars, but if both galaxies contain gas disks
the gas will suffer a violent collision and be lost from the galaxies. Spitzer
& Baade (1951) suggested that collisions might transform spiral galaxies
into gas-free lenticular galaxies, thereby explaining the observation that spi-
rals are replaced by lenticulars in high-density environments such as clusters
(§1.1.3). An alternative and more likely explanation (Gunn & Gott 1972) is
that ram pressure, heating, and other interactions with hot intergalactic gas
in the cluster have gradually eroded the gas disks of spiral galaxies (see van
Gorkom 2004 for a review).

Isolated galaxies have dark halos that extend to several hundred kpc. In
clusters, encounters strip off the outer parts of these halos, so we expect that
cluster galaxies will have much smaller and less massive halos than galaxies
in low-density environments. We can make a crude estimate of this effect
using equation (8.54). For this purpose, we assume that the subject system
and the perturber are identical. Thus Ms = Mp = M and σrel =

√
2σ

where σ is the velocity dispersion in the cluster. We set the dimensionless
parameter W ≈ 1, and set rh = a to estimate the disruption time for stars
at the half-mass radius. Thus

td ! 0.06
σ

GMnrh
. (8.83)

We eliminate the number density n using equation (8.80), and write the mass
M of the galaxy in terms of rh and its velocity dispersion σ2

s = 1
3 〈v

2〉, using
the virial theorem in the form (4.249b); the dispersion for an L! galaxy is
σs ! 200 km s−1 (eq. 1.21). Thus

td ! 0.056
GM!r2

σσ2
s r2

h

! 3.8 Gyr
M!

5 × 1012 M!

800 km s−1

σ

(
200 km s−1

σs

)2 (
r

0.5 Mpc

50 kpc

rh

)2

.

(8.84)
Note that the disruption time is related to the collision time (eq. 8.82) by
the simple formula td/tcoll ! 0.25(σ/σs)2; as the velocity dispersion σ of the
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cluster increases relative to the dispersion σs of the galaxies, gravitational
interactions become less and less important relative to physical collisions.

This result shows that encounters with other galaxies will erode the
dark halos of galaxies residing in the inner 0.5 Mpc of a rich cluster to a
radius rh ∼< 50 kpc. Most of the dark-halo mass has therefore been stripped
from the individual galaxies, and is now smoothly distributed throughout the
cluster (Richstone 1976). Since the disruption time is proportional to Ms/a3

(eq. 8.54) and thus to the mean density of the subject system, low-density
galaxies are more severely affected by encounters, and can be completely
disrupted near the cluster center. The large-scale static tidal field of the
cluster also strips the outer halo of cluster galaxies, a process that we shall
investigate in the next section.

Clusters form hierarchically from smaller systems that resemble groups
of galaxies (§§1.1.5 and 9.2.2). Groups have velocity dispersions of only ∼
300 km s−1, so encounters in groups occur at lower speeds and have stronger
effects—they frequently lead to mergers—and dynamical friction is more
powerful. Most of the galaxy evolution that we see in the centers of rich
clusters may thus be due to “pre-processing” in the groups that later merged
to form the cluster. For example, the exceptionally luminous brightest cluster
galaxies or cD galaxies (§1.1.3) that are found at the centers of clusters
probably arise from the merger of galaxies in precursor groups (Dubinski
1998).

8.3 Tides

In the last section we examined how tidal shocks from high-speed encounters
heat stellar systems and erode their outer parts. We now consider the oppo-
site limiting case of a static tidal field. The simplest example of a static tide
occurs when a satellite travels on a circular orbit in the gravitational field of
a much larger spherical host system. In this case, the satellite experiences
no shocks—in fact, in the frame rotating with the satellite the external tidal
field is stationary—so in the absence of other relaxation effects, a sufficiently
small system could survive indefinitely. However, a static tidal field prunes
distant stars from the satellite system, thereby enforcing an upper limit on
its size. Observationally, globular clusters and other satellite systems often
show a fairly sharp outer boundary, which is called the tidal radius on the
assumption that it is caused by this process (see §4.3.3c, BM §6.1.10, and
King 1962).

In the following subsections, we analyze the effect of a tidal field on a
satellite in a circular orbit using two complementary approaches.
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8.3.1 The restricted three-body problem

Let us suppose that the host and satellite systems are point masses M and
m, traveling at separation R0 in a circular orbit around their mutual center
of mass. The restricted three-body problem is to find the trajectory
of a massless test particle that orbits in the combined gravitational field of
these two masses (Szebehely 1967; Hénon 1997; Valtonen & Karttunen 2006).
Solutions of this problem provide a good approximation to the motion of stars
in the outer parts of a satellite stellar system that is on a circular orbit near
or beyond the outer edge of a spherical host system.

The two masses orbit their common center of mass with angular speed

Ω =

√
G(M + m)

R3
0

, (8.85)

so the gravitational field is stationary when referred to a coordinate system
centered on the center of mass that rotates at speed Ω. We orient this
coordinate system so that the centers of the satellite and host systems are
at xm = [MR0/(M + m), 0, 0] and xM = [−mR0/(M + m), 0, 0], and the
angular speed is Ω = (0, 0, Ω). In §3.3.2 we showed that on any orbit in such
a system, the Jacobi integral

EJ = 1
2v2 + Φ(x) − 1

2 |Ω× x|2

= 1
2v2 + Φeff(x)

(8.86)

is conserved (eq. 3.113). Since v2 ≥ 0, a star with Jacobi integral EJ can
never trespass into a region where Φeff(x) > EJ. Consequently, the surface
Φeff(x) = EJ, the zero-velocity surface for stars of Jacobi integral EJ, forms
an impenetrable wall for such stars. Figure 8.6 shows contours of constant
Φeff in the equatorial plane of two orbiting point masses; the Lagrange points
are the extrema (maxima and saddle points) of this surface. It is instructive
to compare these contours to those in a bar-like potential, shown in Fig-
ure 3.14.9 The stability of orbits near the Lagrange points in the restricted
three-body problem is discussed in Problem 3.25.

From the figure we see that the zero-velocity surfaces near each body
are centered on it, but farther out the zero-velocity surfaces surround both
bodies. Hence, at the critical value of Φeff corresponding to the last zero-
velocity surface to enclose only one body, there is a discontinuous change
in the region confined by the Jacobi integral. The last closed zero-velocity
surface surrounding a single body is called its tidal or Roche surface; since
this surface touches the Lagrange point L3 that lies between the two masses

9 Note that different authors use different conventions for the numbering of the La-
grange points L1, L2, L3.
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Figure 8.6 Contours of equal effective potential Φeff defined by equation (8.88) for two
point masses in a circular orbit. The mass ratio m/M = 1

9 . The points L1, . . . , L5 are the
Lagrange points. The L4 and L5 points form an equilateral triangle with the two masses
(Problem 3.25).

on the line connecting them, it is natural to identify the tidal radius of m as
the distance rJ between m and L3.

We may evaluate rJ by noticing that at (xm − rJ, 0, 0) the effective
potential has a saddle point, so

(
∂Φeff

∂x

)

(xm−rJ,0,0)

= 0. (8.87)

For two point masses a distance R0 apart, equations (8.85) and (8.86) imply

Φeff(x) = −G

[
M

|x − xM |
+

m

|x − xm|
+

M + m

2R3
0

(x2 + y2)

]
. (8.88)

At a point between the two masses, (8.87) is satisfied if

0 =
1

G

(
∂Φeff

∂x

)

(xm−rJ,0,0)

=
M

(R0 − rJ)2
−

m

r2
J

−
M + m

R3
0

(
MR0

M + m
− rJ

)
.

(8.89)
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This equation leads to a fifth-order polynomial whose roots give rJ. In gen-
eral these roots must be found numerically. However, if the satellite is small,
m ' M , then rJ ' R0, and we can expand (R0 − rJ)−2 in powers of rJ/R0

to find

0 =
M

R2
0

(
1 +

2rJ

R0
+ · · ·

)
−

m

r2
J

−
M

R2
0

+
M + m

R3
0

rJ !
3MrJ

R3
0

−
m

r2
J

. (8.90)

Truncating the series in this way is none other than the distant-tide approx-
imation. Then to first order in rJ/R0,

rJ =
( m

3M

)1/3
R0. (8.91)

We call the radius rJ the Jacobi radius of the mass m; alternative
names are the Roche or Hill radius. The Jacobi radius of an orbiting
stellar system is expected to correspond to the observational tidal radius,
the maximum extent of the satellite system. However this correspondence is
only approximate, for several reasons:
(i) The tidal surface is not spherical (see Problem 8.12), so it cannot be

fully characterized by a single radius.
(ii) All we have established is that a test particle can never cross the tidal

surface if it lies inside the tidal surface and has a velocity (in the rotat-
ing frame) small enough that EJ < Φeff(L3). Stars with larger velocities
may or may not escape from the satellite; conversely, stars that lie out-
side the tidal surface can, in some cases, remain close to the satellite for
all future times (see Problem 8.14 and Hénon 1970). The approximate
correspondence between the Jacobi radius and the observational tidal
radius arises because the fraction of velocity space occupied by orbits
that remain close to the satellite diminishes rapidly beyond rJ.

(iii) In most applications, the satellite system is not on a circular orbit.
When m is on an eccentric orbit, there is no reference frame in which
the potential experienced by a test particle is stationary, and no ana-
log of the Jacobi integral exists.10 Thus no direct generalization of our
derivation of the Jacobi radius to the case of non-circular satellite orbits
is possible. King (1962) and others have argued that if the satellite is on
a non-circular orbit, the tidal radius is still given by equation (8.91), but
with R0 replaced by the pericenter distance (we used an analogous ar-
gument to describe the tidal disruption of stars orbiting a massive black
hole; see eq. 7.200). A more accurate approach is to recognize that the
effect of tidal fields on satellites in non-circular orbits is intermediate
between tidal radii—a concept that applies to circular orbits—and tidal
shocks—which apply to high-velocity or plunging orbits. The tidal ra-
dius limits the satellite at a fixed size, no matter how many orbits it

10 Although analogs of the Lagrange points can exist (Szebehely 1967).
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Figure 8.7 The rotating (x, y) coordinate system
used in Hill’s approximation.

travels, while tidal shocks prune the satellite more and more at every
pericenter passage.

(iv) Stars are usually lost from the satellite as a result of weak perturbations,
such as two-body relaxation, that drive EJ slightly higher than Φeff(L3).
Such stars drift slowly away from the satellite and thus can remain close
to the satellite for many orbital periods, thereby contributing to the star
counts even though they are no longer bound to the satellite (Fukushige
& Heggie 2000).

(v) In many cases, the satellite orbits within the body of the host system,
so the point-mass approximation used in deriving equation (8.91) is not
accurate. This defect, at least, is easy to remedy—see equation (8.106)
below.

Tidal forces can be thought of as imposing a limit on the density of a satellite.
Let ρ ≡ m/( 4

3πr3
J) be the mean density of the satellite within a distance rJ,

and ρh ≡ M/(4
3πR3

0) be the mean density of the host inside the orbital radius
R0. Then equation (8.91) states that

ρ = 3ρh; (8.92)

to within a factor of order unity, a satellite is pruned by tidal forces until
its mean density equals the mean density of its host interior to its orbital
radius.

8.3.2 The sheared-sheet or Hill’s approximation

When the satellite is much smaller than the distance to the center of the host
system, we can use the distant-tide approximation for the host’s gravitational
field (§8.2.1). We consider a spherically symmetric host system with potential
Φ(R) at a distance R from its center; here we do not assume that the host
is a point mass, so Φ(R) is not necessarily the Keplerian potential −GM/R.
We assume that the satellite travels on a circular orbit at distance R0 from
the center of the host. We work in a frame with origin at the center of mass
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of the satellite, in which the x-y plane coincides with the orbital plane of the
satellite, êx points directly away from the center of the host system, and êy

points in the direction of the orbital motion of the satellite (see Figure 8.7).
This frame rotates with the circular frequencyΩ0 ≡ Ω0êz, so the acceleration
of a particle in the satellite is given by equation (3.116),

d2x

dt2
= −∇Φ − 2Ω0 ×

dx

dt
−Ω0 × (Ω0 × x), (8.93)

where

∇Φ = ∇Φs +
3∑

k=1

Φjkxk. (8.94)

Here Φs(x) is the gravitational potential from the satellite, and the second
term arises from the distant-tide approximation (8.35). In our coordinate
system, the center of the host is located at X = (−R0, 0, 0) and from equa-
tion (8.36):

Φxx = Φ′′(R0) ; Φyy = Φzz =
Φ′(R0)

R0
; Φxy = Φxz = Φyz = 0.

(8.95)
The equations of motion (8.93) read

ẍ = 2Ω0ẏ +
[
Ω2

0 − Φ′′(R0)
]
x −

∂Φs

∂x
;

ÿ = −2Ω0ẋ +

[
Ω2

0 −
Φ′(R0)

R0

]
y −

∂Φs

∂y
;

z̈ = −
Φ′(R0)

R0
z −

∂Φs

∂z
.

(8.96)

Using the relation Φ′(R0) = R0Ω2
0 we see that the term in square brack-

ets in the second line vanishes. Moreover we can rewrite Ω2
0 − Φ′′(R0) as

−2R0Ω0Ω′(R0) and this in turn can be rewritten as 4Ω0A0 where A0 =
A(R0) is given by equation (3.83). Thus

ẍ−2Ω0ẏ−4Ω0A0x = −
∂Φs

∂x
; ÿ+2Ω0ẋ = −

∂Φs

∂y
; z̈+Ω2

0z = −
∂Φs

∂z
. (8.97)

These are the equations of motion in the sheared sheet or Hill’s approxi-
mation, named after the mathematician G. W. Hill, who used this approach
to study the motion of the Moon in the nineteenth century (Murray & Der-
mott 1999).

(a) The epicycle approximation and Hill’s approximation We first
consider the trajectories of test particles in the absence of a satellite, Φs(x) =
0. The simplest solutions of equations (8.97) have the form

x(t) = xg = constant ; y(t) = −2A0xgt + constant ; z(t) = 0. (8.98)
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These are the analogs of circular orbits in the host system. The general
solution is

x(t) = xg + X cos(κ0t + α),

y(t) = yg(t) − Y sin(κ0t + α), where yg(t) = yg0 − 2A0xgt,

z(t) = Z cos(Ω0t + αz),

(8.99)

where xg, yg0, X , Z, α and αz are arbitrary constants and

κ2
0 = 4Ω0(Ω0 − A0) = −4Ω0B0 ;

X

Y
=

κ0

2Ω0
. (8.100)

Here B0 = A0 −Ω0 (eq. 3.84). Thus we have re-derived the epicycle approx-
imation of §3.2.3, in particular the relation between the epicycle frequency
κ0 and Oort’s constants (eq. 3.84) and the ratio of the axes of the epicycle
(eq. 3.95). The difference between the two derivations is that §3.2.3 described
an approximate solution of the exact equations of motion for a particle on
a nearly circular orbit, while here we have found an exact solution of Hill’s
approximate equations of motion. Note that in Hill’s approximation all par-
ticles have the same epicycle frequency.

It is straightforward to verify that when Φs = 0, the following expres-
sions are integrals of the motion:

E‖ ≡ 1
2 (ẋ2 + ẏ2 − 4Ω0A0x

2) ; E⊥ ≡ 1
2 (ż2 + Ω2

0z
2) ; L ≡ ẏ + 2Ω0x;

(8.101)
E‖+E⊥ and R0L differ from the Jacobi integral and the angular momentum
by constant terms and terms of order O(x3, y3). These expressions are related
to the constants in the orbit solutions (8.99) by

E‖ = 2A0B0x
2
g + 1

2κ
2
0X

2 ; E⊥ = 1
2Ω2

0Z
2 ; L = −2B0xg. (8.102)

A circular orbit has E‖ = 1
2A0L2/B0; hence it is natural to define the epicy-

cle energy Ex as the difference

Ex ≡ E‖ −
A0L2

2B0
,

= 1
2 [ẋ2 + κ2

0(x − xg)
2],

= 1
2κ

2
0X

2,

= 1
2 ẋ2 +

2Ω2
0

κ2
0

(ẏ + 2A0x)2.

(8.103)

Some of these results, derived in other ways and with slightly different nota-
tion, have already appeared as equations (3.86) and (3.102).

(b) The tidal radius in Hill’s approximation If a satellite is present,
with potential Φs(x), the integrals in equation (8.101) are no longer con-
served; the only remaining classical integral is (Problem 8.15)

E ≡ 1
2 (ẋ2 + ẏ2 + ż2 − 4Ω0A0x

2 + Ω2
0z

2) + Φs(x). (8.104)
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This integral is the analog of the Jacobi integral (8.86).
Now let us imagine that the satellite potential Φs arises from a mass m

that is located at x = 0. The equations of motion (8.97) become

ẍ = 2Ω0ẏ + 4Ω0A0x −
Gmx

r3
; ÿ = −2Ω0ẋ −

Gmy

r3
; z̈ = −Ω2

0z −
Gmz

r3
,

(8.105)
where r2 = x2 + y2 + z2. The test particle remains stationary (ẍ = ẋ = ÿ =
ẏ = z̈ = 0) if and only if y = z = 0 and 4Ω0A0 = Gm/|x|3. These conditions
are satisfied for the points on the x axis with

x = ±rJ, where rJ ≡
(

Gm

4Ω0A0

)1/3

. (8.106)

These stationary points are analogs to the Lagrange points L2 and L3 in
the restricted three-body problem (Figure 8.6). If the host is a point mass
M % m, then Ω(R) = (GM/R3)1/2 so A0 = 3

4Ω0 and

rJ =
( m

3M

)1/3
R0. (8.107)

Thus we recover expression (8.91) for the Jacobi radius. For a spherical host
with mass M(R) interior to radius R, it is straightforward to show that this
expression is modified by replacing M by M(R0) and multiplying the Jacobi
radius by a factor

f =

(
1 − 1

3

d ln M

d ln R

)−1/3

. (8.108)

The factor f is unity for a point mass and 1.145 for a singular isothermal
sphere (M ∝ R). For a homogeneous sphere (M ∝ R3) f diverges, so there
is no Jacobi radius: in this case the host potential Φ(R) = 1

2Ω2
0R

2 and Oort’s
constant A0 = 0, so the tidal field 4Ω0A0x in the equations of motion (8.97) is
absent. Physically, there is no tidal radius because all stars in this potential
have the same orbital period: thus, even if the satellite mass were zero, stars
in nearly circular orbits with similar radii and azimuths will continue to have
similar radii and azimuths at all future times.

8.3.3 Tidal tails and streamers

We now investigate what happens to stars after they are stripped from a
satellite by tidal forces, with the help of the angle-action variables described
in §3.5 (Helmi & White 1999; Tremaine 1999). Consider a satellite of mass
m orbiting a host that has mass M % m interior to the satellite orbit. At its
pericenter, a distance R from the center of the host, the satellite is pruned
by tidal forces to a radius r ≈ R(m/M)1/3. Its velocity at pericenter is V ≈
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(GM/R)1/2. To a first approximation, we may assume that stars lost from
the satellite no longer feel its gravitational field, and follow orbits determined
solely by the field of the host. On such orbits, the actions J are constant and
the angles θ increase linearly with time, at a rate θ̇ = Ω = ∂H/∂J where H
is the Hamiltonian corresponding to the host potential. The stripped stars
have a range of actions and angles, which we write as J0 ± ∆J, θ0 ± ∆θ.
The mean actions J0 and the mean angles θ0 at the time the satellite passes
through pericenter are very nearly the actions and angles of the satellite at
that time, since the tidal forces are symmetric about its center of mass. The
spread in actions and angles in the stripped stars arises from two effects: (i)
the stars are lost from both the inner and outer edge of the satellite (near
the Lagrange points L3 and L2), and (ii) the stars have a range of velocities,
roughly equal to the velocity dispersion σ of the satellite. These effects lead
to a fractional spread r/R ∼ (m/M)1/3 in position and σ/V in velocity.
Since σ ≈ (Gm/r)1/2 ∼ V (m/M)1/2(R/r)1/2 ∼ V (m/M)1/3 the two effects
yield approximately the same fractional spread. Thus, the stripped stars are
initially distributed through ranges in action and angle given by

∆Ji

Ji
, ∆θi ∼

( m

M

)1/3
. (8.109)

The spread in actions leads to a spread in orbital frequencies

∆Ωi ∼
3∑

j=1

Hij∆Jj , where Dij ≡
∂2H

∂Ji∂Jj
(8.110)

is the Hessian of the Hamiltonian. The spread in angles grows linearly with
time, such that

∆θ(t) = ∆θ(0) + ∆Ωt, (8.111)

where t = 0 is the time at which the stars were stripped. At large times the
second term dominates, so we have

∆θ(t) ! tD · ∆J. (8.112)

Since the matrix D is symmetric, it is diagonalizable, that is, there exists an
orthogonal matrix A such that

ADAT = D̃, (8.113)

where AT = A−1 is the transpose of A (AT
jk = Akj), and D̃ is the diagonal

matrix formed by the eigenvalues λi of D. We now make a canonical trans-
formation to new angle-action variables (θ′,J′) using the generating function
S(θ,J′) = J′ · A · θ (eq. D.93); thus

θ′ =
∂S

∂J′ = A · θ ; J =
∂S

∂θ
= AT · J′. (8.114)
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Figure 8.8 The ratio of the two
largest eigenvalues of D, the Hes-
sian of the Hamiltonian, for the
isochrone potential (see §3.1c and
Problem 3.41). The axes are the
radial action Jr and the angular mo-
mentum L. When this ratio is small
compared to unity, tidally stripped
stars form a one-dimensional filament
or tidal streamer.

Figure 8.9 Tidal streamers emerging from the globular cluster Pal 5. The plot shows
the surface density of stars whose distances are consistent with the cluster distance. The
clump labeled “M5” is a residual feature from the unrelated cluster M5. The arrow labeled
“b” shows the direction of increasing Galactic latitude. The dotted lines mark the borders
of the field. See Grillmair & Dionatos (2006) for maps of the streamers at even larger
distances from the cluster. From Odenkirchen et al. (2003), by permission of the AAS.

In terms of the new variables, equation (8.112) becomes

∆θ′(t) ! t D̃ ·∆J′ or ∆θ′i(t) ! tλi∆J ′
i (no summation over i). (8.115)
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This result shows that the cloud of escaped stars spreads into three of
the six phase-space dimensions, at rates determined by the initial spread in
actions and the eigenvalues λi of the matrix D. Small satellites have a smaller
spread in actions and so disperse more slowly. If one of the three eigenvalues
is zero, or at least much smaller than the other two, the cloud will expand
in two dimensions in phase space, creating a sheet; this is the situation for
tidal streamers in a spherical host galaxy. If two of the three eigenvalues
are zero, the cloud will expand in one dimension to produce a filament; this
is the situation in a Keplerian potential. Even when two or more of the
eigenvalues of D are non-zero, usually one is large enough compared to the
others that the disrupted stars form a relatively thin tail, which is called a
tidal streamer or tail (see Figure 8.8)—usually the term “tail” is reserved
for the long, prominent, massive streamers formed in major mergers of two
disk galaxies.

Known tidal streamers are associated with the Magellanic Clouds (the
Magellanic Stream, already described in §8.1.1c), the globular cluster Pal 5
(Figure 8.9), and the Sagittarius galaxy (Figure 8.10).

Unlike comet tails, tidal streamers are symmetrical structures that both
lead and lag the satellite along its orbit. For example, in Figure 8.9 the
upper streamer is made up of stars that have longer orbital periods than
the cluster, and hence trail behind it; conversely, the streamer at lower right
contains stars that are on shorter-period orbits, and race ahead of it.

In Chapter 9 we shall argue that galaxies form by hierarchical merging
of smaller subunits. In the merging process, these subunits are disrupted by
tidal forces, and the debris—both stars and dark matter—forms a vast web
of tidal streamers. The number of streamers per unit volume and the corre-
sponding degree of irregularity in the mass distribution of the halo depend
on the distance from the center of the galaxy: at small radii, the galaxy is
hundreds or thousands of crossing times old and the tidal streamers are thor-
oughly phase-mixed, while at large radii subunits are falling in for the first
time and the substructure will be much more prominent (Helmi, White, &
Springel 2003). At any given radius, the substructure is likely to be stronger
in the baryons (stars and gas) than in the dark matter, since the baryons
are concentrated in the dense centers of the dark-matter halos and thus are
less susceptible to tidal forces. Efforts to detect and disentangle this web are
still in their infancy.
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Figure 8.10 The distribution of M-giant stars lying within 7 kpc of the orbital plane of
the Sagittarius dwarf galaxy. The figure is a projection onto this orbital plane, which is
tipped by 77◦ from the Galactic plane. The Galactic disk lies along Y = 0, the Galactic
center is at the origin, and the Sun is at X ! −8kpc, Y ! 0 (by coincidence, the
Sun lies nearly in the Sagittarius orbital plane). Stars that are highly reddened have
been removed, which creates the wedge-shaped gap stretching right from the Sun. The
Sagittarius galaxy is located at X ! 15 kpc, Y ! 5 kpc, and the line extending from it
indicates the direction of its velocity vector. Tidal debris from the galaxy is evident as
the prominent arc passing through (X, Y ) ! (25 kpc,−30 kpc) above the Galactic plane,
and through (X, Y ) ! (−15 kpc, 15 kpc) below the plane. Most of the width of the arcs is
probably due to errors in the stellar distances. From Majewski et al. (2003).

8.4 Encounters in stellar disks

The velocity distribution of stars in the solar neighborhood is approximately
described by the Schwarzschild distribution introduced in §4.4.3 (see also
Problem 8.17). In this df, the number of stars with velocity v in a small
range d3v is

f(v)d3v =
n0 d3v

(2π)3/2σRσφσz
exp

[
−

(
v2

R

2σ2
R

+
v2

φ

2σ2
φ

+
v2

z

2σ2
z

)]
. (8.116)

Here n0 is the number of stars per unit volume, σR, σφ, and σz are the
velocity dispersions along the three axes of a cylindrical coordinate system
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Figure 8.11 The velocity dispersion of stars in the solar neighborhood as a function
of age, from Nordström et al. (2004). From bottom to top, the plots show the vertical
dispersion σz , the azimuthal dispersion σφ, the radial dispersion σR, and the rms velocity

(σ2
R +σ2

φ +σ2
z)1/2. The lines show fits of the form σi ∝ tα where t is the age; from bottom

to top the best-fit exponents α are 0.47, 0.34, 0.31, and 0.34.

centered on the center of the Galaxy, and v is the velocity relative to the
velocity of a circular orbit passing through the solar neighborhood (the Local
Standard of Rest; see §1.1.2). The radial and azimuthal dispersions are
approximately related by

σφ

σR
=

κ

2Ω
, (8.117)

where κ and Ω are the epicycle frequency and the azimuthal frequency for
nearly circular orbits in the solar neighborhood (see eq. 3.100 and Prob-
lem 4.43). Equation (8.116) states that the density of stars in velocity space
is constant on ellipsoids with principal axes σR, σφ and σz, called velocity
ellipsoids in §4.1.2.

Although the shape of the velocity ellipsoid is approximately the same
for different types of stars, its size is not: the dispersions σi (i = R,φ, z)
of cool, red stars are almost three times as large as those of hot, blue stars
(BM Figure 10.12 and Tables 10.2 and 10.3). Since blue stars are young,
while red stars are a mixture of mostly old and a few young stars, this trend
suggests that stars are born on nearly circular or “cold” orbits, and as a
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stellar population ages it “heats up” in the sense that the dispersions σi

increase. This hypothesis can be confirmed by measuring the age-velocity
dispersion relation for nearby stars (Figure 8.11). These observations show
that σi ∝ tα, where α ! 0.5 for σz and α ! 0.3 for both σR and σφ—the
exponent is necessarily the same for these two dispersions, because they are
related by equation (8.117).

We refer to the steady increase of these dispersions with time as disk
heating, and in this section we investigate the dynamics of this process.
A natural first step in this investigation is to wonder whether disk heating
can be due to the accumulation of small velocity kicks from passing stars.
This process was described briefly in §1.2.1 and more thoroughly in §7.4. In
particular, in the discussion following equation (7.106) we saw that encoun-
ters between stars in the solar neighborhood have a negligible effect on their
velocities over the age of the Galaxy. Thus we must seek other explanations.

The simplest mechanism for disk heating is encounters with hypothetical
massive objects in the dark halo, or machos. This process was investigated
in §7.4.4, where we found that the predicted time dependence of the velocity
dispersion σR is incorrect. Moreover, the required macho mass appears to
be incompatible with observations of wide binary stars in the halo (§8.2.2e).
We therefore examine other possibilities.

8.4.1 Scattering of disk stars by molecular clouds

Long before molecular clouds were detected, Spitzer & Schwarzschild (1951,
1953) suggested that encounters between disk stars and massive gas clouds
might be responsible for the random velocities of old disk stars. In Figure 8.12
we illustrate how a molecular cloud or other mass m on a circular orbit in a
disk affects the orbits of nearby stars. Since the cloud mass is ∼< 10−5 times
the mass of the Galaxy, we may use Hill’s approximation (§8.3.2), in which
the cloud is at rest at the origin of a rotating Cartesian coordinate system,
with the x axis pointing radially outward and the y axis in the direction of
rotation. For simplicity we neglect motion perpendicular to the x–y plane.
The stellar trajectories are given by the equations of motion (8.97), where
the cloud potential Φs = −Gm/(x2 + y2)1/2. In the figure, we write the
distances in terms of the Jacobi radius of the cloud (eq. 8.106),

rJ =

(
Gm

4Ω0A0

)1/3

= 52 pc

(
m

105 M!

Ω0

A0

)1/3 (
220 km s−1

vc

R0

8 kpc

)2/3

.

(8.118)
In these units, the equations of motion are independent of m, so Figure 8.12
applies to clouds of any mass.

The figure shows only stars on initially circular orbits that are larger
than the cloud’s orbit. The behavior of orbits that are smaller than the
cloud’s can be deduced by reflecting the orbits shown through the origin of
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Figure 8.12 The trajectories of stars near a mass point in a disk. The orbit of the mass
point is circular, as are the initial orbits of the stars. The coordinate frame co-rotates with
the mass point, which is therefore fixed at the origin; in this expanded view of the area
near the mass point, upwards is radially outward and the mass point is traveling to the left
in an inertial frame. All orbits are restricted to the z = 0 plane. Circular orbits appear
as straight horizontal lines. A sequence of seven orbits is shown, all initially circular with
radius slightly larger than that of the point mass, so it overtakes them. The behavior of
orbits inside the point mass is given by reflecting these orbits through the origin. The
trajectories of the stars are described by equations (8.97). The disk is assumed to have
a flat circular-speed curve, so Oort’s constant A0 = Ω0/2 and the epicycle frequency
κ0 =

√
2Ω0. Distances are measured in units of the Jacobi radius rJ of the mass point

(eq. 8.106), which is also the radius of the circle representing its location.

the figure. The initial orbits shown have angular speeds that are smaller than
the cloud’s, so the cloud overtakes them (i.e., they move to the right in the
cloud frame of reference that is used in the figure). If the initial difference in
orbital radii ∆r ∼< rJ, the encounter simply reverses the direction of the orbit
relative to the cloud, without imparting any significant epicycle motion.11 If
∆r ∼ rJ, the encounter imparts significant epicycle motion—the epicycle
amplitude is comparable to ∆r and the encounter may or may not reverse
the overall direction of motion of the orbit relative to the cloud. For ∆r ∼> rJ,
the star passes the cloud and acquires a small epicyclic motion. It is this
excitation of epicycle motion by encounters with clouds that warms the disk.

We may estimate the efficiency of this process by using the impulse
approximation to find the radial velocity acquired by a star that is initially
on a circular orbit of radius R. If Rc is the radius of the cloud orbit, then
in the sheared sheet the star’s initial orbit is x = R − Rc ≡ b = constant ,

11 This is an example of the donkey effect, described in Box 3.3. No epicycle motion
is excited because the star approaches the cloud slowly, so its eccentricity is an adiabatic
invariant. For a comprehensive discussion of the trajectories in this problem, see Petit &
Hénon (1986).
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y(t) = constant − 2A0bt (eq. 8.99). Integrating the gravitational attraction
of the potential Φs(x) along this trajectory yields

ẋ = −
∫ ∞

−∞
dt

Gmb

[b2 + y2(t)]3/2
= −

Gm

A0b2
. (8.119)

In the impulse approximation, immediately after the encounter we have

x = b ; ẋ = −
Gm

A0b2
; ẏ = −2A0b, (8.120)

and the corresponding epicycle energy and amplitude are given by equations
(8.103),

∆Ex = 1
2 ẋ2 =

f2

2

(
Gm

A0b2

)2

; X = f
Gm

A0κ0b2
, (8.121a)

where f = 1. We have introduced the correction factor f because the impulse
approximation is not accurate: since the radial velocity oscillates with the
epicycle frequency κ0, the impulse approximation requires that the duration
of the encounter is much less than the epicycle period. In fact, the duration
is ≈ b/ẏ = (2A)−1, which is comparable to the epicycle period 2π/κ0. Hence
the impulse approximation makes an error of order unity in the epicycle
energy. The correct derivation (Julian & Toomre 1966 and Problem 8.20)
yields

f =
Ω0

A0
K0

( κ0

2A0

)
+

κ0

2A0
K1

( κ0

2A0

)
, (8.121b)

where Kν is a modified Bessel function (Appendix C.7). For a flat circular-
speed curve, A = 1

2Ω, κ =
√

2Ω, and f = 0.923; for a Keplerian curve
f = 1.680.

This result is based on linear perturbation theory, and hence is valid only
when the epicycle amplitude X induced by the encounter is much smaller
than the impact parameter b. Requiring that X ∼< b implies that

b

rJ
∼>

(
4fΩ0

κ0

)1/3

≈ 1, (8.122)

where we have used equation (8.118) for the Jacobi radius. Thus, equa-
tions (8.121) are valid for encounters with impact parameters that are large
compared to the Jacobi radius, and they show that the epicycle energy ex-
cited in an encounter falls off as b−4. On the other hand, Figure 8.12 shows
that encounters at small impact parameters, b ∼< rJ, simply switch the star
from one circular orbit to another, with no sensible increase in the star’s
random velocity. These considerations imply that the strongest encounters
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have b ∼ rJ, and hence justify our treatment of the molecular cloud as a
point mass: since the typical cloud radius R ∼ 10 pc is much smaller than
its Jacobi radius (8.118), the non-zero cloud size has little influence on the
rate of disk heating.

The speeds with which the stars in Figure 8.12 approach the scatter-
ing cloud are due entirely to the differential rotation of the galactic disk,
ẏ = −2A0b. Once the stars have acquired non-zero epicycle energy, we have
to consider two types of encounter. For large impact parameters b or small
epicycle amplitudes X , the approach speed is still dominated by the con-
tribution from differential rotation (shear-dominated encounters), but at
impact parameters b ∼< κ0X/A0, the encounter geometry will be determined
mainly by the star’s epicyclic motion (dispersion-dominated encounters).

In contrast to shear-dominated encounters, dispersion-dominated en-
counters usually can be treated using the impulse approximation. In this
approximation, the magnitude of the velocity change ∆v in a single en-
counter is proportional to v−1 where v is the encounter velocity. Thus the
average change in epicycle energy Ex is proportional to v−2, and since the
number of encounters per unit time is proportional to v and v2 ∼ Ex we
expect (cf. Problem 8.21)

dEx

dt
∝ v−1 ∝

1√
Ex

. (8.123)

Integrating this result we find that Ex ∝ t2/3 so the velocity dispersion
v ∝ tα with α = 1

3 . This simple calculation somewhat overestimates the
rate of growth of the dispersion, since the thickness of the stellar disk is
larger than the thickness of the cloud layer, so stars spend a smaller and
smaller fraction of their time in the cloud layer as the vertical dispersion, and
the resulting thickness of the stellar disk, continue to grow. The numerical
calculations described below are consistent with this argument, suggesting
that α ! 0.2–0.25 for heating by molecular clouds. This value is too low
to match the observations shown in Figure 8.11—just the opposite problem
from macho-dominated heating, which gives an exponent that is too large
(eq. 7.102).

We have shown that encounters with clouds “heat” the disk, in the sense
that the mean epicycle energy increases with time. It is instructive to ask
where this energy comes from, since the total energy or Jacobi integral of
the star (eq. 8.104) is conserved during each encounter. The first of equa-
tions (8.103) shows that in a razor-thin disk the difference in epicycle energy
Ex before and after the encounter is equal and opposite to the difference in
1
2A0L2/B0; in most galactic potentials A0/B0 < 0 so we conclude that an
increase in Ex is accompanied by an increase in |L| or in |xg| (eq. 8.102),
where xg is the difference in radius between the guiding center of the stellar
orbit and the orbital radius of the molecular cloud. In words, the gravita-
tional interaction with the cloud repels the stars, in the sense that their mean
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orbital radius is shifted away from the cloud. Thus the energy to heat the
disk comes from a redistribution of the surface mass density of the stars in
the disk; the cloud acts as a catalyst to expedite this redistribution of energy
but does not contribute any of its own energy to the disk heating.

Numerous authors have estimated the rate at which star-cloud encoun-
ters heat disks (Spitzer & Schwarzschild 1951, 1953; Jenkins 1992; Hänninen
& Flynn 2002). The best estimate of the number density and masses of
molecular clouds in the solar neighborhood leads to a rate of velocity-
dispersion growth that is too small by a factor of two or more; but the
heating rate is likely to be enhanced by the swing-amplified response or
spiral wake induced in the stellar disk by the gravitational field from the
molecular cloud, which can be several times more massive than the cloud
itself (Julian & Toomre 1966; Julian 1967).

These studies also show that the predicted ratio σz/σR of the vertical
and radial dispersions is ! 0.6 (Ida, Kokubo, & Makino 1993), not far from
the observed ratio of 0.5. However, the predicted age-velocity dispersion
relation is approximately a power law, σi ∝ tα, with exponent α ! 0.2–
0.25. This is significantly lower than the observed exponent, which is 0.3 for
σR and σφ and even larger for σz (Figure 8.11). This result suggests that
molecular clouds are unlikely to be the primary cause of disk heating.

8.4.2 Scattering of disk stars by spiral arms

The disks of spiral galaxies are far from smooth. Gas, dust, and young stars
are always concentrated into spiral arms. Spiral features are also found in
the old stars that make up most of the mass of galactic disks (§6.1.2), so
it is natural to ask whether the gravitational fields of spiral features, like
the fields from molecular clouds, are able to heat galactic disks (Barbanis &
Woltjer 1967).

Consider a weak spiral potential with pattern speed Ωp,

Φs(R,φ, t) = εF (R) cos[f(R) + mφ− Ωpt], (8.124)

where ε ' 1. To illustrate the effect of this potential on a stellar orbit, we
shall make two assumptions that simplify the algebra but still retain most
of the important dynamics: (i) we work in the sheared-sheet approximation
(§8.3.2); (ii) we consider only tightly wound spirals, for which the wavenum-
ber k ≡ df/dR is large compared to 1/R (eq. 6.4).

The sheared-sheet approximation is valid in a neighborhood of the disk
centered at a point [R0,φ0(t)] that rotates at the circular angular speed
φ̇0 = Ω0 = Ω(R0). We expand the spiral potential in a Taylor series around
this point, using the coordinates x = R cos(φ − φ0) − R0 ! R − R0 and
y = R sin(φ− φ0) ! R0(φ− φ0). In this neighborhood, we can approximate
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the shape function as f(R) ! f(R0) + kx. Since the amplitude F (R) varies
slowly, it can be replaced by a constant, F0 ≡ F (R0). Thus we have

Φs(x, y, t) = εF0 cos[f(R0) + kx + my/R0 + mφ0 − Ωpt]

= εF0 cos[kx + my/R0 + m(Ω0 − Ωp)t + constant].
(8.125)

We now substitute this potential into the equations of motion (8.97) of
the sheared sheet, neglecting motion in the z-direction perpendicular to the
disk plane:

ẍ − 2Ω0ẏ − 4Ω0A0x = εkF0 sin[kx + my/R0 + m(Ω0 − Ωp)t + constant];

ÿ + 2Ω0ẋ =
εm

R0
F0 sin[kx + my/R0 + m(Ω0 − Ωp)t + constant].

Since the wave is assumed to be tightly wound, its pitch angle is small so
|k| % m/R0 (eq. 6.7). Thus the right side of the second equation is much
smaller than the corresponding term in the first, and can be neglected. The
second equation can then be integrated to yield ẏ + 2Ω0x = constant , and
this can be substituted into the first equation to give

ẍ+κ2
0x+constant = εkF0 sin[kx+my/R0+m(Ω0−Ωp)t+constant]; (8.126)

here κ0 is the epicycle frequency (8.100). The constant on the left side can be
dropped, since it can be absorbed by a shift in the origin of the x-coordinate.

In the absence of a spiral (F0 = 0) the solution to this equation is
given by equations (8.99); we shall assume that the unperturbed motion is
circular, so the trajectory is x0(t) = (xg, yg0 − 2A0xgt). Now consider how
this motion is modified by the weak spiral potential on the right side of
equation (8.126). We write the trajectory as x(t) = x0(t) + εx1(t), where
εx1(t) is the perturbation induced by the spiral. Then the terms of order ε
in equation (8.126) yield

ẍ1 + κ2
0x1 = kF0 sin[kxg + m(yg0 − 2A0xgt)/R0 + m(Ω0 − Ωp)t + constant]

= kF0 sin(kxg + ωt + c).
(8.127)

In the last expression we have absorbed yg0 in the constant c, and set ω =
m(Ω0 − 2A0xg/R0 − Ωp); this is the frequency at which the unperturbed
orbit encounters successive crests of the spiral potential.

This equation can be solved to yield

x1(t) =
kF0

κ2
0 − ω2

sin(kxg + ωt + c). (8.128)

The solution diverges when ω = ±κ0. These points can be thought of as the
Lindblad resonances of the sheared sheet: at these locations, like the Lind-
blad resonances in a disk, the frequency of excitation by the spiral potential
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coincides with the frequency κ0 of the particle’s natural radial oscillation.
This result is a close analog of equation (3.148), which was derived in the
context of weak bars.

Equation (8.128) shows that the spiral potential imposes a forced radial
oscillation on the star but does not lead to any steady growth in the radial
oscillation x1(t). In other words, a spiral potential with a fixed pattern speed
cannot heat the disk, except perhaps at the Lindblad resonances where our
simple derivation fails.

This result implies that disk heating requires transitory rather than
steady spiral patterns. To illustrate this, let us multiply the potential (8.124)
or (8.125) by a Gaussian function of time, p(t) = (2πs2)−1/2 exp(− 1

2 t2/s2).
Equation (8.127) is thereby modified to read

ẍ1 + κ2
0x1 = kF0p(t) sin(kxg + ωt + c), (8.129)

which has the solution

x1(t) = X1 cos(κ0t +α1)+
kF0

κ0

∫ t

−∞
dt′ p(t′) sin(kxg +ωt′ + c) sin[κ0(t− t′)],

(8.130)
where X1 and α1 are arbitrary constants. Inserting the chosen form for p(t)
and setting the amplitude X1 of the free oscillation to zero, we obtain

x1(t → ∞) =
kF0

2κ0

[
cos(κ0t − kxg − c)e−s2(ω+κ0)

2/2

− cos(κ0t + kxg + c)e−s2(ω−κ0)
2/2

]
.

(8.131)

Thus the transitory spiral pattern has induced a permanent epicyclic oscil-
lation. When the characteristic duration of the transient, s, is much greater
than the orbital period, the induced epicycle amplitude is strongly peaked
near the Lindblad resonances ω = ±κ0. On the other hand, when the du-
ration of the transient is short, the arguments of the exponential are small
and epicycle motion is induced over a wide range of radii in the disk.

This example shows that the ability of spiral structure to heat the disk
is strongly dependent on its temporal structure. According to the Lin–Shu
hypothesis (§6.1), in which spiral structure is a stationary wave with a single,
well-defined pattern speed, disk heating is negligible except at the Lindblad
resonances. In such models the disk can be heated over a wide range of radii
only if the pattern speed evolves with time, so the Lindblad resonances slowly
sweep across most of the disk. On the other hand, if the spiral structure is
transient, the whole disk can be heated—this situation is likely to occur in
flocculent spirals, intermediate-scale spirals, or grand-design spirals excited
by recent encounters.

Let us suppose that a given star is subjected to N independent tran-
sient perturbations. Each transient induces an epicyclic motion whose radial
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component can be written in the form x1(t) = ai cos(κ0t +αi), i = 1, . . . , N ,
where ai and αi are given by equations similar to (8.131). After N transients,

x1(t) =
N∑

i=1

ai cos(κ0t + αi)

=
(∑

ai cosαi

)
cosκ0t −

(∑
ai sinαi

)
sinκ0t

≡ af cos(κ0t + αf)

(8.132)

where

a2
f =

(∑
ai cosαi

)2
+

(∑
ai sinαi

)2
=

N∑

i,j=1

aiaj cos(αi − αj). (8.133)

Since the transients are uncorrelated, the phases of the epicyclic oscillations
that they induce are also uncorrelated. Hence on average cos(αi − αj) will
be zero when i 0= j, and the only terms in the sum that contribute to the
final amplitude af will be those with i = j. Thus a2

f ! N〈a2〉, where 〈a2〉
is the mean-square amplitude induced by a single transient. If the rate
of occurrence and the strength of new transients are independent of time,
we conclude that a2

f , and hence the squared velocity dispersion v2, should
grow linearly with time. In other words, v ∝ tα, where α = 0.5. This
behavior holds only so long as af is not too large: once the epicycle size
becomes comparable to the radial wavelength of the spiral arms, the effects
of the spiral tend to average out over the epicycle period, so the heating is
weaker—this is the same effect that leads to the reduction factor in the WKB
dispersion relation for spiral waves, as described in §6.2.2d. Estimates of the
heating rate at larger amplitudes can be obtained using the Fokker–Planck
equation (Jenkins & Binney 1990; Jenkins 1992) or numerical simulations
(De Simone, Wu, & Tremaine 2004); these calculations show that α can vary
between 0.25 and 0.5 depending on the properties of the spiral transients
(duration, strength, pitch angle, etc.). This range of α is nicely consistent
with the observed exponent for the growth of the radial dispersion, α ! 0.3,
and provides a substantially better fit than the values predicted for heating
by molecular clouds.

The radial and azimuthal velocity dispersions are related by equation
(8.117), so the exponent in the age-velocity dispersion relation must be the
same for these two axes of the velocity ellipsoid. However, spiral structure
cannot excite velocities in the z-direction effectively, since its spatial and
temporal scales are much larger than the amplitude or period of oscillations
perpendicular to the disk plane. Thus, scattering by spiral arms cannot ex-
plain the relation between age and the z-velocity dispersion σz. Probably
gravitational scattering by molecular clouds redistributes the radial and az-
imuthal velocities into the direction perpendicular to the plane (Carlberg
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1987; Jenkins & Binney 1990). Thus molecular clouds are responsible for
the shape, but not the size, of the velocity ellipsoid.

Transient spiral arms have other interesting consequences for the dis-
tribution of disk stars. Strong transients can produce long-lived clumps of
stars in velocity space, sometimes called star streams or moving groups (see
page 327 and De Simone, Wu, & Tremaine 2004). Spiral waves also re-
distribute the angular momenta of disk stars, leading to substantial inward
and outward migration of individual stars over the lifetime of the Galaxy
(Sellwood & Binney 2002).

8.4.3 Summary

There is little doubt that irregularities in the Galaxy’s gravitational field heat
the disk and thereby determine the velocity distribution of disk stars. It is
less clear which irregularities dominate this process. We have discussed the
influence of hypothetical massive objects in the dark halo (machos), molec-
ular clouds, and transient spiral arms. Other possibilities include merging
satellite galaxies (Walker, Mihos, & Hernquist 1996; Velázquez & White
1999), substructure in the dark halo (Benson et al. 2004), or the Galactic
bar (Kalnajs 1991; Dehnen 2000a). The simplest explanation that appears to
be consistent with most of the observations is the combined effects of spiral
transients and molecular clouds.

8.5 Mergers

So far we have investigated galaxy mergers and encounters through limiting
cases that are analytically tractable. For example, minor mergers occur
through dynamical friction (§8.1), which leads to gradual orbital decay, and
as the orbit shrinks tidal forces and tidal shocks (§§8.2 and 8.3) become
stronger and stronger, until either the small galaxy is completely disrupted
or its core comes to rest at the center of the larger galaxy.

In major mergers the physical processes are qualitatively similar, but
harder to quantify. The relative velocity of the centers of mass of the two
galaxies is converted into randomly directed velocities of their individual
stars—the same process as dynamical friction—but the conversion is so rapid
that the galaxies merge into a single steady-state system within a few crossing
times. Thus, numerical simulations such as the one shown in Figure 8.1,
rather than analytic arguments, are the primary tool for understanding major
mergers.

In this section we shall focus on features of major mergers that have
direct observational consequences; these are important because they provide
the “smoking gun” that enables us to identify galaxies that are participating
in ongoing mergers, and thus to explore the physics of mergers. Reviews
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of interacting and merging galaxies are given by Barnes & Hernquist (1992)
and Kennicutt, Schweizer, & Barnes (1998).

8.5.1 Peculiar galaxies

A small fraction of galaxies are found in a highly disturbed state. The
importance of these puzzling systems was emphasized by Arp (1966), who
compiled an Atlas of Peculiar Galaxies containing over 300 such objects (see
also Arp & Madore 1987). Arp argued that “if we could analyze a galaxy
in a laboratory, we would deform it, shock it, probe it, in order to discover
its properties” and that the peculiarities of the galaxies in his atlas offered a
range of experiments on galaxies furnished to us by nature, which we should
learn from. At one time it was widely believed that unusual systems of this
kind were exploding galaxies or galaxies with very strong magnetic fields, but
by the early 1970s it became clear that most are actually colliding systems,
and that many of these collisions will result in mergers.

Figure 8.13 shows the pair of galaxies NGC 4038/4039 from the Arp at-
las. This system consists of overlapping blobs of light from which two curved
tails of much lower surface brightness emerge, giving rise to its common
name “the Antennae”. From end to end, the tails span over 100 kpc. Can
this striking morphology be the signature of a merger? In a classic paper,
Toomre & Toomre (1972) showed that this is indeed the case. The Toomres
studied encounters between disks of massless particles orbiting around point
masses: even with this grossly oversimplified model of a galaxy—the disk has
no self-gravity, there is no massive halo, and the disk circular-speed curve
is Keplerian rather than flat—they were able to show that for a suitable
choice of initial conditions, it is possible to find a pair of colliding stellar
systems that is remarkably similar to Figure 8.13. We show their model in
Figure 8.14. More accurate models that include the self-gravity of the disk
and a massive halo largely confirm the Toomres’ conclusions (Barnes 1988;
Dubinski, Mihos, & Hernquist 1999).

The Toomres’ model predicted the line-of-sight velocity at each point in
the system. The observed velocities were found to be in complete agreement
with the model, and show that the point of closest approach of the two
galaxies, when the tails were launched, occurred 0.5 Gyr ago (Hibbard et al.
2001).

The tails seen in the Antennae differ in one important respect from the
tidal streamers discussed in §8.3.3. The streamers discussed in that section
are composed of stars stripped from small satellites of much larger stellar
systems; the streamers are narrow because the satellite is small. In contrast,
the two merging systems in the Antennae have comparable size; the tails
are narrow because the stars come from cold stellar systems—the disks of
the two merging spiral galaxies—so all the stars near a given location have
nearly the same initial velocity. Mergers of hot stellar systems of comparable
size do not generate narrow tidal tails.
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Figure 8.13 The interacting galaxies NGC 4038 and NGC 4039, the “Antennae”. This
is an overexposed image to emphasize the low surface-brightness tidal tails. The distance
from the overlapping blobs at the center to the bright star above and to the right of them
is 40 kpc. Courtesy of D. F. Malin and the Anglo–Australian Telescope Board.

Another route to the same conclusion is through the collisionless Boltz-
mann equation, which shows that the density of stars in phase space is con-
served (eq. 4.10). A long-lived tidal tail or streamer must have high phase-
space density, since the spatial density must be high if the tail is to be visible
against the background galaxy, and the velocity dispersion must be low if it
is not to disperse quickly. Thus the progenitor of the tidal tail or streamer
must have high phase-space density, a condition that is satisfied by both
satellite stellar systems (because their spatial densities are high and their
velocity dispersions are low compared to the larger host galaxy) and disks
(because the velocity dispersion is low).

Another galaxy with prominent tidal tails that is almost certainly an
ongoing merger is NGC 4676 (“the Mice”), shown in Figure 8.15.
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Figure 8.14 A model of the NGC 4038/4039 pair by Toomre & Toomre (1972). Repro-
duced by permission of The Astrophysical Journal.

8.5.2 Grand-design spirals

We have seen in Chapter 6 that grand-design spirals such as M51 (Plate 1)
or M81 (Plate 8) often have companion galaxies nearby, and that the gravi-
tational forces from an encounter with a companion can excite a strong but
transitory spiral pattern (Figure 6.26). In most cases the orbit of the com-
panion galaxy that excited the spiral will decay by dynamical friction, so
the two galaxies are likely to merge in the future. Thus many of the most
beautiful and striking spiral galaxies in the sky are likely to be the product
of major mergers.



8.5 Mergers 699

Figure 8.15 The Mice, NGC 4676, a pair of interacting galaxies at a distance of 95Mpc.
Top: optical image from the Hubble Space Telescope. Bottom: an N-body model. Credit
for HST image: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin (STScI),
G. Hartig (STScI), the ACS Science Team, and ESA. Credit for N-body model: J. Dubinski
(Dubinski & Farah 2006).

8.5.3 Ring galaxies

A handful of galaxies exhibit a distinctive morphology consisting of a lumi-
nous ring of young stars that is both rotating and expanding, usually with
one or more compact companion galaxies nearby. Figure 8.16 shows one
example, the “Cartwheel Galaxy”. These remarkable systems are known as
ring galaxies or sometimes collisional ring galaxies (Appleton & Struck–
Marcell 1996).12

Ring galaxies form when a disk galaxy collides head-on with another
system (Lynds & Toomre 1976). The collision excites a radially expanding

12 These are distinct from the prominent rings that are seen in some barred galaxies,
which are thought to arise from rapid star formation in gas that is in resonance with the
bar (see §6.5.2d and Buta 1995).
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Figure 8.16 The Cartwheel galaxy, the prototypical ring galaxy, at a distance of 125Mpc.
The ring diameter is about 45 kpc. The lower of the two compact stellar systems to the left
of the ring—both members of the same group of galaxies as the Cartwheel—is probably
responsible for the ring structure. Credit: K. Borne (George Mason University) and
NASA.

density wave that triggers star formation in the disk as it passes. The com-
pact systems are the surviving central cores of the colliding galaxies. Ring
galaxies are rare—about one in 104 galaxies—because they are short-lived,
and because they are produced only in collisions with near-zero impact pa-
rameter.

We can use the impulse approximation to develop an instructive model
of this process, even though this approximation may not hold for all ring
galaxies. Consider a singular isothermal sphere that contains a rotating,
cold, disk of test particles in the plane z = 0, and suppose that it collides
with a second singular isothermal sphere having the same circular speed vc,
traveling along the z axis with relative speed V % vc. The gravitational
potential of each sphere is Φ(r) = v2

c ln r, and in Problem 8.7 it is shown
that the change ∆vR in the velocity of a disk star at initial radius R is then

∆vR = −2R
v2
c

V

∫ ∞

R

dr

r
√

r2 − R2
= −

πv2
c

V
. (8.134)

If V/vc is sufficiently large, the velocity impulse ∆vR/vc will be small, so
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Figure 8.17 The evolution of the
radii of particles in a disk after a
head-on encounter, as described by
equation (8.135), following Toomre
(1978). The ratio V/vc = 7.

(i) we may neglect the changes in the target’s potential that are generated
by the collision; (ii) we can describe the subsequent motion of the disk stars
using the epicycle approximation. If the collision is assumed to occur at
time t = 0, the radius of a star that is initially at R0 is given by the solution
of equation (3.78a) that satisfies the initial conditions x(0) = R − R0 = 0,
ẋ(0) = ∆vR:

R(R0, t) = R0 +
∆vR

κ0
sin(κ0t) (t > 0). (8.135)

Here κ0 is the epicycle frequency at R0, which is given by κ2
0 = 2v2

c/R2
0

(eq. 3.79a).
The evolution of the radii of particles in the disk is shown in Figure 8.17.

The crowding of particle orbits gives rise to strong axisymmetric density
waves that propagate out through the disk. The point of maximum compres-
sion of the particle orbits is likely to be a region of enhanced star formation,
which we identify with the ring of luminous young stars. The outward prop-
agation of the density waves implies that the region inside the ring should
contain older, redder stars that were formed when the ring was smaller, and
such radial color gradients are indeed observed in several ring galaxies.

In practice, the collision of two galaxies is never precisely along the z axis
of the disk, as assumed in this simple model. However, numerical experiments
such as those shown in Figure 8.18 show that whenever an intruder passes
close to the center of the target disk on a trajectory that is angled by less than
about 30◦ from the symmetry axis of the disk, a striking ring is generated.
If the intruder misses the center of the target just slightly, the dense center
of the target galaxy is displaced from the center of the ring, as is observed
in the Cartwheel Galaxy.

8.5.4 Shells and other fine structure

Figure 8.19 shows images of NGC 3923 and NGC 1344, which exhibit arclike
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Figure 8.18 Six encounters between a disk of test particles orbiting a point mass and
an intruder of half the mass, marked by an open circle. The relative orbit is parabolic,
and the system is viewed from 45◦ above the disk. A ring is generated when the impact
parameter is small compared to the size of the disk (bottom three rows). From Toomre
(1978), with permission of Springer Science and Business Media.
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Figure 8.19 The giant elliptical galaxies NGC 3923 (top) and NGC 1344 (bottom) are
surrounded by faint shells. The images have been processed to accentuate the shells using
a high-pass spatial filter. Courtesy of David Malin, c© Anglo–Australian Observatory.

shells in the surface brightness on both sides of the galaxy; careful analysis
reveals over 20 such shells in this galaxy. The fraction of otherwise smooth
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Figure 8.20 The box and loop orbits shown in Figure 3.8. The upper figures show stars at
randomly chosen phases on the orbits to give a visual impression of the density distribution
in the orbit, and the lower figures show the number of stars as a function of horizontal
position within the boxes marked by dashed lines. Note the sharp cusps at the turning
points of the orbits.

galaxies (ellipticals and lenticulars) that exhibit shells can be as large as
30–50%, depending on how closely one looks. Shells may also be present in
spiral galaxies, but are camouflaged by spiral structure, dust, and irregular
star formation in the disk. Spectra show that the shells are composed of stars,
not gas. As is often the case in astronomy, the most famous examples of this
phenomenon are atypical. The shells in NGC 3923 are exceptionally sharp
and numerous, aligned with the major axis of the galaxy, and interleaved in
radius (the shells from one side alternate in radius with those from the other
side). In contrast, most shell galaxies contain ∼< 3 detectable shells, and
these are fainter, more diffuse, and have a less regular geometrical structure.

Other types of fine structure are also seen in elliptical galaxies (Kenni-
cutt, Schweizer, & Barnes 1998), and are given names such as “loops”, “rip-
ples”, “plumes”, “jets”, “X-structures”, etc. The tidal streamers described
in §8.3.3 are also a kind of fine structure.

Most fine structure in galaxies is formed by the same process that forms
tidal streamers, namely the disruption of a stellar system that has high phase-
space density—either a small, hot galaxy or a large, cold one.

For example, consider the fate of the stars in a small satellite that is
disrupted by a host galaxy. Initially the disrupted stars will form a tidal
streamer, but eventually the streamer will disperse. If the host potential
is regular, the stars will finally spread into a cloud of particles that have
similar actions but uniformly distributed angles. Such a cloud gives rise to
surface-density distributions such as those shown in Figure 8.20 for box and
loop orbits. A box orbit produces an X-shaped structure, while a loop orbit
produces an annulus with sharp edges at its inner and outer turning points.
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In projection, the edges of these particle distributions can appear as shells,
as indicated in the figure.

Another simple example is the disruption of a disk galaxy that is on a
radial orbit in a spherical potential (Quinn 1984). This process can be ex-
plored by releasing a cloud of test particles in a fixed potential (Figure 8.21).
Since the angular momentum of the test particles is nearly zero, the motion
can be followed in the two-dimensional (r, vr) plane. Shells are formed at the
turning points of the orbits, and they are interleaved in radius like the shells
observed in NGC 3923. The rather special circumstances of the encounter
(radial orbit, spherical host potential) are consistent with the observation
that most shell galaxies do not exhibit the regular geometrical structure
seen in this example.

The much more common case of the disruption of a galaxy on a non-
radial orbit can also produce shells, such as those shown in Figure 8.22, but
now the shells display the more complex geometry that is encountered in
most shell galaxies (Hernquist & Quinn 1988, 1989).

More generally, shells arise when stars are confined to a subspace of lower
dimensionality than the full six-dimensional phase space. The projection of
this smooth manifold onto the two-dimensional plane of the sky gives rise to
caustics, which can be classified using catastrophe theory (Tremaine 1999).

8.5.5 Starbursts

So far we have focused on the effects of mergers on a galaxy’s stars, but
the effects on its gas—if the galaxy has a gas disk—are even more dramatic.
As Toomre & Toomre (1972) wrote, “Would not the violent mechanical ag-
itation of a close tidal encounter—let alone an actual merger—already tend
to bring deep into a galaxy a fairly sudden supply of fresh fuel in the form
of interstellar material?” The Toomres’ prescient question was answered
by Larson & Tinsley (1978), who showed that many merger remnants had
anomalous blue colors consistent with young, massive stars formed in a re-
cent starburst—a short, intense period of rapid star formation at a rate
far exceeding that of a normal galaxy. Since that time a wide variety of
observations has confirmed that vigorous star formation occurs in merging
galaxies. Among the most striking of these observations is the discovery of
almost 103 blue objects in the Antennae (Figure 8.13), which appear to be
young globular clusters formed in the merger (Whitmore & Schweizer 1995).

The observational link between mergers and star formation was ce-
mented by the discovery of starburst galaxies. These are among the most
luminous galaxies known, emitting up to 1012.5 L!, mostly at infrared wave-
lengths. This intense emission comes from young stars shrouded in dust
and concentrated near the center of the galaxy. The emission is powered by
extremely high star-formation rates, as large as 103 M! yr−1, compared to
a few M! yr−1 in galaxies like the Milky Way. Starburst galaxies usually
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Figure 8.21 The disruption of a disk galaxy on a radial orbit in a spherical potential. The
host galaxy is represented by a rigid, fixed Plummer potential (2.44a) with mass M = 1
and scale length b = 1, and the satellite has mass m = 0.1 and is modeled by a rigid
Kuzmin-disk potential (2.68a) with scale length a = 0.5b, containing 10 000 test particles
on initially circular orbits. Top: The cross marks the center of the host galaxy and the
length of each arm of the cross is 5b. The evolution is viewed from a direction normal
to the plane of the disk galaxy (the x-y plane). The distribution of test particles is first
shown just before the satellite reaches the center of the host, falling in from infinity along
the positive x axis, and at intervals of 10 time units thereafter. Bottom: the projection of
the test particles onto the radius-radial velocity plane at time t = 50 (Quinn 1984).
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Figure 8.22 The formation of shells in the disruption of a small spherical galaxy on a
non-radial orbit. The small ellipse in the first frame represents the approximate location
and projected shape of the larger galaxy in the encounter. The simulation uses 20 000 test
particles. From Hernquist & Quinn (1989), reproduced by permission of the AAS.

exhibit tidal streamers or other optical features indicative of a recent col-
lision or merger (Sanders & Mirabel 1996; Kennicutt, Schweizer, & Barnes
1998; Kennicutt 1998). The presence of these short-lived features, and the
rapid consumption of gas required by the high star-formation rate, imply
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that starbursts last for only a few tens of Myr.
The reason for these very high star-formation rates is suggested by nu-

merical simulations of mergers of disk galaxies that contain both gas and
stars (Noguchi 1988; Mihos & Hernquist 1996). During the merger, both
the gas and stars form strong bars. The gas bar leads the stellar bar, so the
gravitational torque from the stars rapidly drains angular momentum from
the gas. Remarkably, in a typical major merger the gas can lose up to 90%
of its angular momentum in a fraction of an orbital period, thus settling into
a dense rotating disk ∼< 0.5 kpc across, in which star formation is likely to be
extremely rapid.

8.5.6 The merger rate

The rate at which galaxies merge is a fundamental point of comparison be-
tween observations and models of structure formation. The merger rate can
be determined from observations using two quite different methods.

The first method is to count the fraction of galaxies showing obvious
features of an ongoing or recent major merger, such as tidal tails or star-
bursts, and combine this fraction with an estimate of how long such features
last to determine the merger rate per galaxy. The first attempt of this kind
was made by Toomre (1977b), who pointed out that about 10 of the ∼ 4000
NGC galaxies13 show prominent tidal tails, and that these tails probably
last no more than ∼ 0.5 Gyr. Thus the rate of major mergers is probably
about 10/4000/0.5 Gyr ! 0.005 Gyr−1 for a luminous galaxy. This estimate
neglects two important biases, of opposite sign: first, not all major mergers
yield visible tidal tails; second, mergers enhance the star-formation rate, so
galaxies experiencing mergers are more luminous than quiescent galaxies,
and hence will be over-represented in a flux-limited catalog like the NGC. A
crude assumption is that these two biases cancel, leaving the original estimate
of 0.005 major mergers per Gyr approximately correct.

A second approach is to count the fraction of galaxies with companions
within a given radius, and combine this fraction with estimates of the rate
of decay of the companion orbit by dynamical friction to obtain the merger
rate (Tremaine 1981). The distribution of companions is described by the
galaxy-galaxy correlation function ξ(r), defined so that the probability
of finding two galaxies in the volumes d3r1 and d3r2 separated by r ≡ |r1−r2|
is

d2p = n2
0[1 + ξ(r)] d3r1d

3r2, (8.136)

where n0 d3r is the probability of finding one galaxy in the volume d3r. Over
a wide range of separations and luminosities, the galaxy-galaxy correlation

13 NGC stands for “New General Catalog”, a catalog of galaxies, nebulae, and clusters
compiled by Dreyer in 1888, which was a revision and expansion of Herschel’s “General
Catalog” of 1864. See BM Appendix B.
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function can be described by a power law,

ξ(r) !
(r0

r

)γ
, (8.137)

where (Hawkins et al. 2003)

r0 = (7.2 ± 0.4)h−1
7 Mpc ; γ = 1.67 ± 0.03, (8.138)

over the range 1 ∼< ξ ∼< 103. Thus the number density of companions at
distance r ' r0 from a primary galaxy is

n(r) = n0

(r0

r

)γ
. (8.139)

The rate of decay of the orbital radius of a companion due to dynam-
ical friction is given approximately by equation (8.16). Assuming that the
primary galaxy and the companion have similar luminosity and velocity dis-
persion, σ, we have

dr

dt
! −0.4fσ, (8.140)

where we have set the Coulomb logarithm ln Λ ! 1 according to the ar-
guments that follow equation (8.17), and f ∼> 1 is a correction factor that
arises because the relative orbit is likely to be elongated rather than circular,
which accelerates the decay. For each primary galaxy, the current of merging
companions through radius r is then

Ṅ(r) ! 1
2 × 4πr2n(r)

∣∣∣∣
dr

dt

∣∣∣∣ ! 0.8πfn0σrγ
0 r2−γ ; (8.141)

the factor 1
2 is needed to avoid counting each galaxy twice, once as a primary

galaxy and once as a companion. In a steady state, the current should be
independent of r, and this constant number would represent the merger rate;
the actual weak dependence on r seen in equation (8.141), Ṅ ∝ r2−γ ∝ r0.3,
probably arises because our approximation that both galaxies are isothermal
spheres is not very accurate. We shall equate the merger rate Ṅmerge to
Ṅ(rmin), where rmin = 20h−1

7 kpc is roughly the radius at which the stellar
distributions of two luminous galaxies begin to merge.

The derived merger rate depends on the minimum luminosity of the
companion galaxies that we consider—clearly, if we count minor mergers,
the merger rate will be higher than if we count only major mergers. For the
present estimate we shall consider only mergers of companions with luminos-
ity L > L!, where L! is the characteristic Schechter luminosity defined by
equation (1.18). Using that equation, the average number density of galaxies
more luminous than L! is

n0(L > L!) =

∫ ∞

L!

dLφ(L) = φ!

∫ ∞

1
dxxαe−x. (8.142)
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For the parameters given after equation (1.18), we find n0(L > L!) =
0.21φ! ! 1.0 × 10−3h3

7 Mpc−3. According to the Faber–Jackson law (1.21),
the dispersion of an L! galaxy is σ! ! 200 km s−1. Thus

Ṅmerge(L > L!) ! 0.8πfn0(L > L!)σ!r
γ
0 r2−γ

min

≈ 0.008h7
f

2
Gyr−1.

(8.143)

The approximate agreement of this estimate with the rate 0.005 Gyr−1 ob-
tained by Toomre (1977b) provides encouraging evidence that our under-
standing of the merging process is sound. More recent determinations of the
merger rate (Conselice 2006) are also roughly consistent with these crude
estimates.

Problems

8.1 [1] Two identical galaxies are initially at rest, at a large distance from one another.
They are spherical, composed solely of identical stars, and their light distributions obey
the Sérsic law (1.17) with Sérsic index m and effective radius Re. The galaxies fall together
and merge. If the merger product also satisfies the Sérsic law with the same index, what
is its effective radius?

8.2 [1] The derivation of the dynamical friction formula (8.1) assumes that the subject
system is a point mass, but in many cases of interest the subject system is an extended
body, such as a star cluster or satellite galaxy, characterized by a median radius rh. If the
point of closest approach of the field star to the center of the subject body is ∼< rh then
the deflection of the field-star orbit, and its contribution to the drag force, will be smaller
than if the subject body were a point of the same total mass.

(a) Argue that the total drag force is largely unaffected by the non-zero size of the subject
body if rh ∼< b90, where b90 is given by equation (3.51).

(b) If rh ∼> b90, argue that encounters with impact parameter ∼< rh make a negligible
contribution to the total drag force. Using the first of equations (L.11), argue that in this
case the argument of the Coulomb logarithm is given by Λ ! bmax/rh.

(c) Combine these conclusions to argue that the correct value of the argument of the
Coulomb logarithm for a subject body of median radius rh is approximately

Λ =
bmax

max(rh, GM/v2
typ)

, (8.144)

and that the fractional error in lnΛ that arises from using this expression is of order
(lnΛ)−1.

8.3 [3] In the core of a certain flattened elliptical galaxy, the mean stellar velocity van-
ishes and the velocity distribution is Gaussian, with dispersion σz parallel to the galaxy’s
symmetry axis êz , and dispersion σ⊥ = σz/

√
1 − e2 > σz in directions orthogonal to êz .

A massive body moves through the core at velocity v = vz êz + v⊥ê⊥, where ê⊥ · êz = 0.
Show that the frictional drag on the body may be written F = −γzvz êz −γ⊥v⊥ê⊥, where

1 <
γz

γ⊥
=

I(1, 3
2 )

I(2, 1
2 )

; I(µ, ν) ≡
Z ∞

1

dλ

λµ(λ − e2)ν
exp

h
− 1

2σ
−2
⊥

“v2
⊥
λ

+
v2

z

λ− e2

”i
. (8.145)

Hint: use the analogy between the Rosenbluth potential h(v) and the gravitational po-
tential (see discussion following eq. L.19) and equation (2.125).
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8.4 [3] Chandrasekhar’s dynamical friction formula can be derived using the linear re-
sponse theory developed in §5.2.4 (Marochnik 1967; Kalnajs 1972b).

(a) Consider a point mass M traveling on the straight-line trajectory xM (t) = vM t
through a uniform stellar system. Show that the spatial Fourier transform (eq. 5.26)
of the density response is given by

ρs1(k, t) = M

Z
dt′ R(k, t − t′) e−ik·vM t′ , (8.146)

where R(k, τ) is the response function (eq. 5.27).

(b) As we showed in §5.2.4, an infinite homogeneous stellar system is unstable, so to
avoid an infinite response we must suppress the self-gravity of the system when evaluating
equation (8.146). The justification for this neglect is that the instability arises on scales
comparable to the Jeans length, while the dominant contribution to dynamical friction
comes from encounters at much smaller distances (page 576), for which the effects of
self-gravity are small. To remove self-gravity, we simply replace the response function
R in equation (8.146) by the polarization function P , which measures the response to
a given total potential rather than a given external potential. With this substitution,
use equation (5.55) to show that if the stellar system has a Maxwellian df, the Fourier
transform of the density response is

ρs1(k, t) = 4πGMρ e−ik·vM t
Z ∞

0
dτ τeik·vM τ−(kστ)2/2, (8.147)

where ρ and σ are the density and velocity dispersion of the host system.

(c) Take the inverse Fourier transform of ρs1, and evaluate the resulting integrals to show
that the density response is

ρs1(x, t) =
GMρ

σ2r
exp

 

−
v2

M sin2 θ

2σ2

!»
1 − erf

„
vM cos θ
√

2σ

«–
, (8.148)

where erf denotes the error function (Appendix C.3), r = x − xM , r = |r|, and θ is the
angle between vM and r. Hint: carry out the integral over k first, using polar coordinates
in k-space with the polar axis along the vector r + vMτ ; then evaluate the integral over
τ after transforming to the variable u = 1/τ .

(d) Show that the gravitational force exerted on M by this density distribution is

F = 2π
G2M2ρ

σ2

vM

vM

Z
dr

r

Z 1

−1
dµ µ exp

"

−
v2

M (1 − µ2)

2σ2

# »
1 − erf

„
vM µ
√

2σ

«–
, (8.149)

where µ = cos θ.

(e) The upper limit to the integral over radius should be of order the size R of the host
system, while the lower limit should be roughly the 90◦ deflection radius b90 ≈ GM/σ2

(eq. 3.51), since interior to this radius the perturbations to the orbits of passing stars are
so large that linear response theory is invalid. With these limits, show that evaluation
of the integrals in equation (8.149) yields the standard dynamical friction formula (8.7),
with Λ = R/b90.

8.5 [1] At some initial time the stellar streaming velocity v(x) within an axisymmetric
galaxy of density ρ(R, z) constitutes circular rotation at angular frequency ω(R, z). The
galaxy is then perturbed by the high-speed passage of a massive system. Show that
within the impulse approximation the instantaneous change ∆v in v that is produced by
the encounter satisfies Z

d3x ρ(v ·∆v) = 0. (8.150)

Hint: write v = ωR êφ and exploit the fact that ∆v can be derived from a potential.

8.6 [2] Reproduce Figure 8.4.
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8.7 [2] Consider a high-speed head-on encounter at relative velocity V . Assume that the
perturber is spherical, with gravitational potential Φ(r), and let (R, z) be cylindrical coor-
dinates such that the z axis coincides with the perturber’s trajectory (i.e., the trajectory
is R = 0, z = V t).

(a) Show that the only non-zero component of the impulse to a star at (R, z) is

∆vR = −
2R

V

Z ∞

R

dr
√

r2 − R2

dΦ

dr
. (8.151)

(b) If the perturber is a Plummer model, Φ = −GM/
√

r2 + b2, of mass M and scale
length b (§2.2.2c), show that the impulse is

∆vR = −
2GMR

V (R2 + b2)
. (8.152)

(c) If the perturber and the perturbed system are identical Plummer models, show that
the energy per unit mass gained by each system in the encounter is

∆E =
G2M2

3V 2b2
. (8.153)

8.8 [1] Show that the probability P (V ) dV that two stars drawn from Maxwellian dis-
tributions with one-dimensional dispersions σ1 and σ2 have relative speed in the interval
(V, V + dV ) is

P (V ) dV = (2πσ2)−3/2 exp
“
−

V 2

2σ2

”
V 2dV, σ2 = σ2

1 + σ2
2 . (8.154)

In words, the relative speed distribution is Maxwellian, with squared dispersion equal to
the sum of the squared dispersions of the two populations.

8.9 [1] Is there more angular momentum in the orbit of the Magellanic Clouds around
our Galaxy or in the spin of the disk of our Galaxy?

8.10 [3] Show that the Lagrange points L4 and L5 in the restricted three-body problem

(a) each form an equilateral triangle with the two masses M and m.

(b) are stable if and only if the mass ratio m/(M + m) < 1
2
−

√ 23
108

= 0.03852 (Szebehely
1967). Hint: start with equation (3.116); do not use equations (3.127) since these assume
that Φxy = 0, which is not true in this case.

(c) Are the Lagrange points L1, L2, L3 stable?

8.11 [3] A frictionless railroad crosses a valley that separates two flat plateaus of equal
height. At t = 0, two cars, each of mass m, are sent off with the same speed v and
separation d from the horizontal stretch of track on one side of the valley. Show that when
the cars emerge onto the horizontal stretch of track on the other side of the valley, they
have zero relative velocity and their separation is unchanged.

Discuss the relation between this system and disk shocking of globular clusters; in
particular, why does passage through the disk heat the cluster but leave the relative
velocity of the cars unchanged? Hint: consider adding a spring of rest length d and
stiffness ω2/m between the two cars.

8.12 [2] A satellite system of mass m is in a circular orbit around a point-mass host
M ) m. Let (x, y, z) be Cartesian coordinates with êx pointing along the line joining
the two masses and êz normal to the orbital plane. The distance of the tidal surface from
m along the x axis is rJ (eq. 8.91). Show that the distance of this surface from m along
the y- and z-axes is 2

3 rJ and (32/3 − 31/3)rJ, respectively. Thus, the tidal surface is not
spherical.
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8.13 [2] In the distant-tide approximation, the tidal field around a freely falling satellite
of a host galaxy can be written in the form −∇Φt = −

P3
i,j=1 êiΦijxj , where {xj} are

non-rotating Cartesian coordinates centered on the body (see §8.2.1). The tidal field is
said to be compressive along axis i if êi · ∇Φt > 0, that is, if the tidal force points
towards the center of the satellite.

(a) If the host galaxy is spherical with density ρh(R) at a distance R from its center, prove
that the tidal force is compressive along all three axes if and only if ρh > 2

3ρh, where ρh
is the mean density of the host interior to R (cf. eq. 8.92).

(b) If the density of the host is ρ(R) ∝ R−γ , prove that the tidal force is compressive in
all directions if and only if γ < 1. In a host with this property tidal disruption cannot
occur, no matter how small the mass of the satellite may be. How is this result consistent
with the discussion of tidal disruption in §8.3?

8.14 [3] This problem investigates how orbits that lie far beyond the Jacobi radius can
remain bound to a satellite. We consider a satellite on a circular orbit, using Hill’s ap-
proximation (§8.3.2) and restrict our attention to the orbital plane of the satellite, z = 0.
Since the orbits in question are much larger than the Jacobi radius, the gravitational field
of the satellite is weak. Thus we may assume that the orbit is described approximately by
the solution (8.99) over timescales of order the epicycle period Tr = 2π/κ0, with constants
of motion xg, yg0, X, Y , and ψ that change slowly due to perturbations from the satellite.

(a) Show that the guiding-center radius xg changes at a rate

ẋg =
1

2B0

∂Φs

∂y
, (8.155)

where Φs(x) = −Gm/(x2 + y2)1/2 is the potential from the satellite. Hint: use equations
(8.97), (8.101), and (8.102).

(b) If the perturbations from the satellite are weak, and |xg| * |yg| (assumptions we will
justify below) then the term ∂Φs/∂y in equation (8.155) can be replaced by its average
over an epicycle period at fixed values of the constants of motion; that is

∂Φs

∂y
⇒
fi

∂Φs

∂y

fl
≡

Gm

2π

Z 2π

0
dτ

yg − Y sin τ

[(xg + X cos τ)2 + (yg − Y sin τ)2]3/2
. (8.156)

In the limit where |xg| * |yg| * X, that is, where the distance of the guiding center from
the satellite is much less than the epicycle size, show that
fi

∂Φs

∂y

fl
= −

Gmyg

X3
W

„
Ω0

κ0

«
, where W (u) ≡

2

π

Z π/2

0
dτ

8u2 sin2 τ − cos2 τ

[cos2 τ + 4u2 sin2 τ ]5/2
.

(8.157)
Hint: expand equation (8.156) in a Taylor series, and use equation (8.100). The function
W (u) varies from 0.10032 for u = 1 (Keplerian orbits) to 0.22662 for u = 2−1/2 (flat
circular-speed curve) to 0.5 for u = 1

2 (harmonic oscillator).

(c) Differentiating the equation for yg(t) in (8.99) and using the assumption that the time
derivatives of the constants of motion are small yields ẏg = −2A0xg. Using this result
and equation (8.155) show that the equation of motion for the guiding center is

ÿg = −
A0

B0

fi
∂Φs

∂y

fl
. (8.158)

Interpret this result in terms of the “effective mass” introduced in Box 3.3.

(d) Show that the motion of the guiding center is given by

xg(t) = Xg cos(ωt + α) ; yg(t) = Yg sin(ωt + α), (8.159)

where Xg and α are arbitrary and

Xg

Yg
= −

ω

2A0
; ω2 =

GmA0

−B0X3
W

„
Ω0

κ0

«
=

4Ω0A2
0

−B0

“ rJ

X

”3
W

„
Ω0

κ0

«
; (8.160)
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the final form has been derived with the use of equation (8.106). In most galactic potentials
A0 > 0 and B0 < 0, so ω2 > 0 and ω is real. Thus the guiding center oscillates around
the satellite; if the orbit lies far outside the tidal radius (X ) rJ) then (i) the oscillation
is slow in the sense that ω * Ω0, and (ii) the excursions in yg are much larger than the
excursions in xg, consistent with the assumptions we made in deriving this result. The
approximations we have used also require that Yg * Y , that is, the amplitude of the
guiding-center oscillations must be smaller than the epicycle amplitude.

(e) In Problem 5.1, we showed that a solid ring orbiting a planet is unstable. This calcula-
tion neglected tidal forces. Would a solid ring that is much larger than the Jacobi radius
be stable?

8.15 [1] (a) Derive the energy integral (8.104) for the sheared sheet in two ways, first by
multiplying the equations of motion (8.97) by ẋ, ẏ, ż respectively, adding, and integrating;
second by finding the Lagrangian and Hamiltonian that yield the equations of motion.

(b) Assume that we impose periodic boundary conditions on the sheared sheet, by iden-
tifying y + 2πR with y. Find the angle-action variables for the case Φs = 0, and relate
these to the angle-action variables in the epicycle approximation (§3.5.3b).

8.16 [1] A spherical host galaxy contains two small satellites having masses m1 and m2.
The satellites travel on nearly circular orbits with nearly the same orbital radius and plane.

(a) Argue that their interactions can be described using Hill’s approximation (8.97) in the
form

ẍ1−2Ω0ẏ1−4Ω0A0x1 = −
∂Φ12

∂x1
; ÿ1 +2Ω0ẋ1 = −

∂Φ12

∂y1
; z̈1 +Ω2

0z1 = −
∂Φ12

∂z1
, (8.161)

where Φ12 = −Gm2/|x1 − x2|. Here xi ≡ (xi, yi, zi) is the position of satellite i, i = 1, 2.
The equation of motion for satellite 2 is obtained by interchanging the indices 1 and 2.

(b) In this approximation, what is the trajectory of the center of mass of the two satellites,
xcm ≡ (m1x1 + m2x2)/(m1 + m2)?

(c) Show that determining the motion of the two satellites can be reduced to solving the
equation of motion for a single particle with position x ≡ x2 − x1.

8.17 [2] This problem analyzes the sheared sheet (§8.3.2) as a model for the kinematics
of the solar neighborhood or other stellar disks. For simplicity, we restrict ourselves to a
two-dimensional disk, ignoring motion in the z-coordinate, although the results are easily
generalized to three-dimensional disks.

(a) Show that in the absence of local mass concentrations (that is, if the satellite potential
Φs = 0) the equations of motion (8.97) are invariant under the transformation

x → x +∆x ; y → y − 2A0∆xt. (8.162)

Describe the physical meaning of this symmetry.

(b) According to the Jeans theorem, the equilibrium df f(x, y, ẋ, ẏ) can depend only on
the integrals of motion E‖ and L (eq. 8.101). Show that the only combination of these
integrals that is invariant under the transformation (8.162) is the epicycle energy defined
in equation (8.103). Thus argue that if the disk is smooth on small scales, the df must
have the form f(Ex).

(c) For a df of this form, show that the surface density is independent of position, the
mean radial velocity vanishes, the mean azimuthal or y-velocity is −2A0x, and the ratio
of the dispersions in the azimuthal and radial directions is

σ2
y

σ2
x

=

R
dẋdẏ f(Ex)(ẏ + 2A0x)2
R

dẋdẏ f(Ex)ẋ2
=

κ2
0

4Ω2
0

, (8.163)

a result already derived by different methods in equation (3.100).



Problems 715

(d) Show that if f(Ex) ∝ exp(−E2
x/σ2

0) then

f(x, y, ẋ, ẏ) =
Σ

πσ2
0

Ω0

κ0
exp

»
−

ẋ2

2σ2
0

−
2Ω2

0(ẏ + 2A0x)2

κ2
0σ

2
0

–
. (8.164)

Show that this is the analog of the Schwarzschild df introduced in §4.4.3.
(e) Does this df exhibit asymmetric drift (§4.8.2a)?

8.18 [2] Assume that the Sun travels in a circular orbit in the Galactic plane. Let (x, y, z)
be rotating Cartesian coordinates centered on the Sun, with êx pointing away from the
Galactic center and êz pointing to the north Galactic pole.

(a) Show that the zero-velocity surfaces in the combined gravitational field of the Sun and
the Galaxy are given by

2A(B − A)x2 + (A2 − B2 + 2πGρ0)z2 −
GM'

r
= constant, (8.165)

where ρ0 is the density in the solar neighborhood, A and B are Oort’s constants, and
r2 = x2 + y2 + z2. Hint: see Problem 3.18.

(b) Let xJ, yJ, zJ be the intersections of the Sun’s tidal surface with the coordinate axes.
Evaluate these quantities in parsecs, using the parameters in Tables 1.1 and 1.2.

8.19 [2] Reproduce Figure 8.8.

8.20 [3] The goal of this problem is to determine the epicycle amplitude induced in a
star as it passes a molecular cloud, in the shear-dominated regime. We use the equations
of motion (8.97) and neglect motion perpendicular to the x–y plane. We assume that
the cloud is at the origin and that the star is initially on a circular orbit with impact
parameter b, so x(t) = (b,−2A0bt). If the cloud potential is φ(x) = −Gm/(x2 + y2)1/2

and its mass is sufficiently small that the right sides of the equations of motion can be
evaluated along the unperturbed stellar orbit, show that after the encounter the epicycle
amplitude is (Julian & Toomre 1966)

X =
GmΩ0

κ0A2
0b2

»
K0

„
κ0

2A0

«
+

κ0

2Ω0
K1

„
κ0

2A0

«–
, (8.166)

where Kν is a modified Bessel function (Appendix C.7). Thus, derive the correction factor
f in equation (8.121b).

8.21 [2] In this problem we estimate the rate of growth of epicycle energy in the dispersion-
dominated regime. Consider a star traveling on a nearly circular orbit in the equatorial
plane of a razor-thin galaxy. At time zero, the star is instantaneously deflected by the
gravitational field from a nearby molecular cloud that is itself on a perfectly circular orbit.
The star is traveling at speed v with respect to the cloud, and the encounter deflects it
through an angle η onto a new, nearly circular orbit within the galactic plane. Show that
the deflection changes the star’s epicycle energy by an amount

∆Ex = Ex(γ2 − 1)
ˆ
sin2 η(sin2 α− γ−2 cos2 α) −

1

2γ
sin 2η sin 2α

˜
, (8.167)

where γ = 2Ω/κ and α is the epicycle phase (see eqs. 3.91 and 3.93, or 8.99). At the
radius of the star’s orbit, there are n clouds per unit area, each having mass m. The mass
distribution in the clouds can be represented by a Plummer model with scale length b,
which is much smaller than the star’s epicycle radius. Using the impulse approximation,
assuming that the relative velocity is dominated by the velocity dispersion of the stars,
and assuming that the deflection angle η is small, show that the expectation value of the
rate of change of epicycle energy is

Ėx =

√
2G2m2n

b
√

Ex
(γ2 − 1)

Z π/2

0
dα

sin2 α− γ−2 cos2 α

(sin2 α + γ−2 cos2 α)3/2
. (8.168)

Verify that Ėx > 0 for γ > 1. What happens to stars in a galaxy with γ < 1?


