
Astro 250: Solutions to Problem Set 1

by Eugene Chiang

Problem 1. Apsidal Line Precession

A satellite moves on an elliptical orbit in its planet’s equatorial plane. The planet’s
gravitational potential has the form

U ≈ GMp

r

[

1 − J2

(

Rp

r

)2

P2(cos θ)

]

, (1)

where r is the distance from the planet to the satellite, θ is the polar angle measured from
the planet’s spin axis, P2(cos θ) = 1

2
(3 cos2 θ− 1) is the Legendre polynomial of degree 2,

Mp and Rp are the planet’s mass and radius, respectively, G is the gravitational constant,
and J2 is a constant that characterizes the dimensionless strength of the quadrupole field
of the planet (the degree of planetary oblateness). Celestial mechanicians define their
potentials U to be positive, by contrast with the usual convention in physics.

a) Use the appropriate perturbation equation due to Gauss (equation 2.165 of MD)
to calculate 〈 ˙̃ω〉, the time-averaged precession rate of the satellite’s apsidal line.

b) Show that a and e do not suffer any time-averaged variations using the appropriate
equations of Gauss (also found in section 2.9 of MD).

a) First, some relations for Keplerian ellipses to lowest order in e that are convenient to
have at one’s fingertips:

r = a(1 − e cos f) (2)

ḟ = n(1 + 2e cos f) (3)

GMp = n2a3 (4)

ṙ = nae sin f (5)

The perturbation equations for ω̃, e, and a in the plane read, again to lowest order
in e:

dω̃

dt
=

1

nae
(−R cos f + 2S sin f) (6)
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de

dt
=

1

na
(R sin f + 2S cos f) (7)

da

dt
=

2

n
[Re sin f + S(1 + e cos f)] (8)

One fact worth remembering is that when you pull inwards (R < 0) on a particle near
its periapse (f ≈ 0), its apsidal line advances (dω̃

dt > 0; ω̃ advances in the direction of
increasing true anomaly).

The planet’s axisymmetric bulge causes a purely inward radial perturbation force in
its equatorial plane. Using P2(0) = −1/2, and remembering that celestial mechanicians
define the potential to be positive, we have:

R =
d

dr
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(9)

We insert this into perturbation equation (6) and average over 1 orbit to find the time-
averaged precession rate.

<
dω̃

dt
>=

3JR2
pGMp

2nae

∫

2π
0

cos f
r4

dt
df df

∫ 2π/n
0

dt
(10)

Note that we must average over time, not true anomaly; the particle spends more time
near apoapse than periapse, and the perturbation force must be weighted to account for
this. Insert equations (2–4) into (9) to find

< dω̃
dt >=

3

√
GMpJR2

p

2
a−7/2 (11)

Physically, the 1/r4 perturbation force is much stronger at periapse than apoapse, so
that despite the extra time spent at apoapse, the attractive perturbation force is felt
principally at periapse. The result of the net extra inward tug at periapse is that the
apsidal line advances.

b) The radial force R in the perturbation equations for a and e are weighted by sin f ,

which averages to zero over 1 orbit .

Problem 2. The Perversity of Osculating Elements

Deduce the values and time dependences of the osculating elements that characterize
a perfectly circular equatorial orbit of radius r around an oblate planet. Employ the
potential given by equation (1) above. To get started, compute the relation between the
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angular velocity and the orbital radius. Remember that the osculating elements are those
elements of a Keplerian ellipse that just “kisses” (is instantaneously tangential to) the
actual position and velocity of the particle. We fit the Kepler orbit to the motion by
assuming that the particle moves in a point-mass potential. Here the potential is not
that of a point-mass, but we wish to describe the motion of the particle as if it were.

The osculating elements of a particle at a particular instant in time are the a, e, and
ω̃ appropriate to a Keplerian (read: point-mass potential) ellipse fitted to the particle’s
motion at that instant. Here the particle is executing a perfect circle about a non-
point-mass potential, and we (perversely) wish to describe its circular orbit in terms of
constantly changing Keplerian ellipses. It is important to remember that the n, a and
e appropriate to the fitted ellipse at any instant are abstractions which fall out of the
osculating element formalism and do not correspond to anything terribly physical.

Let’s first solve for a and e as a function of r (and quadrupole coefficient J). Two
unknowns call for two equations. The first equation is a geometrical constraint: since
the particle is moving purely azimuthally in its perfect circle, the particle must be either
at the periapse or the apoapse of the fitted ellipse. Let’s guess that the particle is at the
periapse (if we choose incorrectly, the fitted e will turn out to be negative):

r = a(1 − e) (12)

The second equation fits the circular velocity; equate the centripetal acceleration to the
total radial acceleration due to the planet:

rλ̇2 =
GMp

r2

[

1 +
3

2
J

(

Rp

r

)2
]

= rn2(1 + 4e cos 0) (13)

where for the last expression we have used (3). Use (12–13) to solve for a and e in terms
of r, remembering that for osculating elements, n2a3 = GMp always (the fitted ellipse
is a Keplerian ellipse):

e = 3

2
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r

)2

(14)

a = r(1 + 3

2
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)2

) (15)
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Now for ω̃ we argue as follows: the only way an ellipse can trace out a circle is if its
longitude of periapse advances as quickly as its mean longitude, ˙̃ω = λ̇. Then

ω̃ = λ̇t+ ω̃0 (16)

where λ̇ can be expressed in terms of r using equation (13).

Since ȧ and ė are both proportional to R sin f , and since the particle is always at f =
0, ȧ = ė = 0. Accordingly, the values for a and e that we deduced have no time
dependences.

We can use Gauss’s equations to prove that ˙̃ω = λ̇. Using (6),

dω̃

dt
=

1

nae

3GMpJR
2
p

2r4

=
GMp

nar2

= na2/r2

= n(1 + 2e) = λ̇ (17)

Problem 3. Velocity Ellipsoid in Collisionless Keplerian Disks

Consider a circumstellar disk composed of massless test particles which move without
colliding on orbits of eccentricity e� 1. What is the ratio of the velocity dispersions in
the radial and azimuthal directions? Material in the reading from Binney & Tremaine
(1987) is relevant to this problem.

By velocity dispersion in an axisymmetric disk we mean the following. Imagine ourselves
co-rotating with the disk on a circular orbit. At a given instant in time, we measure
the apparent velocities of all particles whizzing by our position. We then (1) square
and (2) average the apparent velocities in a particular direction to obtain the squared
velocity dispersion, σ2, in that direction. The problem asks you to obtain the ratio of
squared dispersions in the radial and azimuthal directions, σ2

r/σ
2

φ. Provided the disk is
collisionless (particle pass through each other), this ratio is magically independent of
the actual distribution of random velocities; i.e., this ratio is independent of the actual
distribution of eccentricities, provided they are small.

To begin, let us fix our orbital radius at R0 and our angular velocity at Ω0. The
particles which manage to cross our position (so that we can measure their velocities)
originate from a range of parent guiding centers centered about our own orbit. Those
particles which come from relatively distant guiding centers will have relatively high
eccentricities in order to reach us. Consider a particle which crosses our position from a
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(generic) guiding center at Rg which is a radial distance xg > 0 inside our fixed, circular
orbit: Rg + xg = R0. The orbit of the particle is expressed in terms of its radial and
azimuthal excursions, x and y, from its circular guiding center orbit, viz.

x = X cos(κt+ ψ) = X cos(nt+ ψ) (18)

y = Y sin(nt+ ψ) = −2X sin(nt+ ψ) (19)

where the rightmost equalities are appropriate for Keplerian ellipses of small eccentricity.
In this regime, the radial epicyclic frequency, κ, equals the azimuthal frequency, n, so
that orbits are closed. Moreover, the amplitude of excursions in the azimuthal direction,
Y , is twice that in the radial direction, X.

Calculate first the radial velocity dispersion, σ2

R. In the following, the overhead bar
denotes an average over all particles crossing our position at a given instant in time, t0.
It is an average over all particles originating from all contributing guiding centers.

σ2

R = ẋ2

= X2n2 sin2(nt0 + ψ)

= n2X2 sin2(nt0 + ψ)

=
n2

2
X2 (20)

The last equality follows from our assumption that amplitudes and phases of measured
particles are completely uncorrelated. (For two uncorrelated variables, AB = A × B.)
We can go no further without knowing the explicit distribution of eccentricities and
semi-major axes of the particles. However, this information is not required because the
question asks only for the ratio of σ2

R to σ2

θ , and the quantity X2 will divide out in that
ratio, as we show below.

Calculate now the azimuthal velocity dispersion, remembering that the apparent
azimuthal velocity of a particle (the one that you measure) is really the difference between
its inertial space azimuthal velocity and your own inertial space circular velocity. Realize
below that in certain instances the difference between R0 and Rg is negligibly small.

σ2

θ = (θ̇R0 − Ω0R0)2

= R2

0(θ̇ − Ω0)2

= R2

0

[

(θ̇ − Ωg) + (Ωg − Ω0)
]2
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= R2

0(
ẏ

Rg
− dΩ

dR
xg)2

Now realize that xg, the radial distance from the guiding center to your position, is
merely x, the instantaneous radial excursion of the particle away from its guiding center
(for some reason, this seemingly obvious fact took me 3 hours yesterday to realize):

= R2

0

[

−2Xn cos(nt0 + ψ)

Rg
− dΩ

dR
X cos(nt0 + ψ)

]2

≈
[

−2Xn cos(nt0 + ψ) +
3n

2
X cos(nt0 + ψ)

]2

≈ n2

2
X2(−2 +

3

2
)2

=
n2

8
X2 (21)

Then dividing (20) by (21) and taking the square root, we obtain our final answer:

σR

σθ
= 2 (22)

which is the inverse of the ratio of Keplerian epicyclic motions about a given guiding
center. It is different from that ratio because of the underlying mean shear of the disk.
Of course, the squared ratio is 4. Note that the velocity dispersion in the z direction

is de-coupled from the planar components (inclinations have nothing to do with eccen-
tricities, provided both are small). The squared ratio of 4-to-1 (radial component being
larger) for Keplerian disks figures prominently in studies of disks; Chandrasekhar was
the first to derive this ratio, I believe; different values will obtain for different rotation
(shearing) profiles in disks, be they Galactic or planetary; in disks composed of perfectly
spherical, inelastic, collisional particles, the velocity ellipsoid tends to round itself into
a sphere (i.e., for optical depth τ � 1, collision rates become so high that the particles
act like a gas of isotropic pressure, σ2

r = σ2

φ = σ2
z). The cross component σ2

rφ ≡ 〈vrvφ〉
determines the rate of angular momentum transport across annuli—i.e., radial mass
transport—in accretion disks (it is zero in our collisionless problem).
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