
Astro 250: Solutions to Problem Set 2

by Eugene Chiang

Problem 1. Impulse approximation

Consider close encounters between a test particle and the secondary mass m2 in the
restricted 3-body problem with small mass ratio between the secondary and the primary,
µ � 1. Take the secondary mass to occupy a perfectly circular orbit of radius a0 = 1.
For parts (a)–(d), assume that the test particle is inserted at opposition on a very nearly
circular orbit with semi-major axis a = 1 − x and that µ1/3 � x � 1.

a) How long does it take the test particle to move an azimuthal distance 2x relative to
m2? Estimate the time rate of change of x, ẋ, during the encounter by calculating the
radial impulse the test particle receives when it moves past m2 on an unperturbed orbit.

For this problem, we’ll take a0 and n0 to be the fixed semi-major axis and mean motion,
respectively, of the secondary mass, m2. In natural units, a0, n0 and the gravitational
constant G are set to one (which implies that m1 = 1 and µ = m2). Usually we’ll write
out all these variables explicitly to make physical sense of our equations and to check
units, but occasionally we’ll get rid of them to make the algebra appear cleaner.

The difference in angular velocities between the test particle and m2 is

∆n = −dΩ

dr
x =

3n0

2a0
x (1)

Solve for the time, t2x, required to move 2x:

a0∆n × t2x = 2x (2)

=⇒ t2x = 4
3n0

= 4
3 (3)

independent of x and equal to 2P0/3π, where P0 is the orbital period of m2.

In the crude impulse approximation, say that the test particle receives a radial ve-
locity kick outwards, ẋ > 0, equal to the gravitational acceleration due to m2 at closest
approach, times the interaction time t2x:

ẋ ∼ Gµ

x2
× t2x ∼ 4Gµ

3n0x2 = 4µ
3x2 (4)
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b) Estimate the eccentricity, ∆e, that results from the initial encounter of the test particle
with m2. Neglect the Coriolis acceleration which only introduces a numerical factor of
order unity. Express ∆e as a function of µ and x.

The radial velocity kick of part (a) manifests itself as a new eccentricity. To order of
magnitude,

ẋ ∼ n0a0∆e (5)

=⇒ ∆e ∼ 4
3µ

(a0

x

)2
(6)

c) Use the Jacobi constant to estimate the change in semi-major axis, ∆a, that results
from the encounter. You may find it helpful to read the section in the text on the
Tisserand relation before attempting this part. Express ∆a as a function of µ and x and
include its sign.

Neglecting unimportant overall multiplicative factors, we write the Jacobi constant as

CJ = ET − n0h (7)

where ET is the energy per unit mass of the test particle measured in inertial space,
and h is the inertial space specific angular momentum. Take ET and h to be mostly
due to motion about the largest mass, m1; this is the route towards deriving Tisserand’s
relation. We know for orbits about m1 that

ET = −Gm1

2a
= − Gm1

2a0(1 − x
a0

)
(8)

and that

h = h|periapse = na

√

1 + e

1 − e
× a(1 − e)

= na2
√

1 − e2

= n0a
2
0

(

1 − x

a0

)−3/2 (

1 − x

a0

)2
√

1 − e2 . (9)

Substitute (8) and (9) into CJ , use n2
0a

3
0 = Gm1, divide out the overall multiplicative

factor of Gm1, and omit all constants such as a0 and n0 to obtain:
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CJ =
1

2(1 − x)
+ (1 − x)1/2

√

1 − e2 + O(µ) (10)

Drop the order µ term and expand to second order in x, in anticipation of the fact that
first order terms will vanish:

CJ =
1

2
(1 + x + x2) + (1 − 1

2
x − 1

8
x2)

√

1 − e2

=
3

2
+

3

8
x2 − 1

2
e2 (11)

Now use the constancy of the Jacobi integral before (no prime) and after (prime) the
encounter:

C ′

J − CJ = 0 =
3

8

[

(x + ∆x)2 − x2
]

− 1

2
(∆e)2

=⇒ ∆x =
2

3

(∆e)2

x
(12)

Since a = 1 − x, ∆a = −∆x. Plugging in (6), we finally have

∆a
a0

= −32
27µ2

(a0

x

)5
(13)

Note the sign—the close encounter with the secondary mass has reduced the semi-major
axis of the particle. If the test particle were placed initially outside the orbit of the
secondary mass, then x < 0 and ∆a > 0. The secondary mass acts to repel the test
particle and to excite its eccentricity.

d) What is the change in inertial space angular momentum, ∆h, suffered by the test
particle in this initial encounter? Express ∆h as a function of µ and x and include its
sign.

It is sufficient for this question to work to first order in x. Using relations for h above,

∆h = h′ − h = n0a
2
0

[

1 − 1

2

x + ∆x

a0

]

√

1 − 1

2
(∆e)2 − n0a

2
0(1 − 1

2

x

a0
)

= −1

2
(∆e)2n0a

2
0 −

1

2

∆x

a0
n0a

2
0
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= −1

2
n0a

2
0

[

(∆e)2 +
2

3
(∆e)2

a0

x

]

≈ −16
27n0a

2
0 µ2

(a0

x

)5
(14)

The torque due to the outside secondary mass is negative, causing the test particle to
lose angular momentum. The reverse would be true if the test particle were outside the
secondary mass.

e) Calculate the radial spacing, δa, between the location of neighboring principal mean
motion resonances. Each resonance is characterized by a positive integer p. Consecutive
encounters of an unperturbed test particle moving on the p’th resonance orbit occur at
intervals of p periods of the relative orbit of the massive bodies. Express δa as a function
of p.

First find the xp appropriate to the pth resonance. By definition,

2π

n0
p =

2π

np − n0
(15)

where np is the mean motion at the pth resonance. Equation (15) gives what is called
the synodic period, Psynodic, the period between successive encounters. Let np = n0(1 +
xp/a0)

−3/2. Insert this relation into the above equation to find

xp

a0
= (1 − 1

p
)−2/3 − 1 ≈ 2

3p
(16)

where the latter approximation holds in the p � 1 limit; higher order resonances are
found closer to the secondary mass (corotation circle). Now δap,p+1 ≡ xp − xp+1 so we
find that

δap,p+1

a0
= (1 − 1

p)−2/3 − (1 − 1
p+1)−2/3 ≈ 2

3p(p+1) (17)

where again, the latter approximation holds in the p � 1 limit.

f) Find the critical x at which ∆a = δa. Express xcrit as a function of µ. This expression
can be compared with Wisdom’s resonance overlap criterion for chaos, a topic we will
cover later.

Work in the p � 1 limit. Then

|∆a| = |δa|
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=⇒ 32

27
µ2

(

a0

xcrit

)5

=
2

3p2
crit

=
3

2

(

xcrit

a0

)2

=⇒ xcrit

a0
=

(

8µ
9

)2/7
(18)

where we have used (16), (17), and (13). For x < xcrit, the perturbation can kick the
test particle across resonances, leading to chaotic trajectories.

g) Assume that at each subsequent encounter with m2, the test particle’s angular mo-
mentum changes by the amount ∆h calculated in part (d). Calculate an approximate
expression for the time-averaged torque, T , on the test particle. Express T as a function
of µ and x and include its sign. This expression is useful in studies of ring shepherding;
can you see why?

Keep working in the p � 1 limit.

T ∼ ∆h/Psynodic

∼ ∆hn0

2πp

∼ 3∆hn0|x|
4πa0

∼ −4 sign(x)
9π

Gm1

a0
µ2

(a0

x

)4
(19)

Problem 2. Tadpoles and Horseshoes

Consider the circular restricted three-body problem. Start from the equation of motion
of the test particle, expressed in polar co-ordinates in the co-rotating frame:

r̈ − rθ̇2 − 2rθ̇ =
∂U

∂r
and rθ̈ + 2ṙθ̇ + 2ṙ =

1

r

∂U

∂θ

where U is the celestial mechanician’s potential in the rotating frame (the so-called
“pseudo-potential”):

U =
1 − µ

r1
+

µ

r2
+

1

2
r2 .

Take µ � 1. Here r is the distance of the particle to the center of mass, r1 is the distance
of the particle to the primary of mass 1− µ, and r2 is the distance of the particle to the
secondary of mass µ. The secondary executes a perfectly circular orbit of radius 1 from
the primary at an angular frequency of 1.
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Describe the position of the test particle in terms of its radial deviation away from the
unit circle: ∆ = r − 1 � 1. We will derive an equation for the shapes of those orbits
that librate about the L4 and L5 points—so-called tadpole and horseshoe orbits. We will
also derive an expression for the libration periods of small tadpole orbits. To filter out
the fast epicyclic motion and select only the slow motion of libration about L4 and L5,
take d/dt � 1.

a) Expand the potential retaining terms of order ∆, ∆2, and µ. (Start from the law of
cosines to write down expressions for r1 and r2.)

The celestial mechanician’s potential in the rotating frame reads, in its full glory:

U =
1 − µ

r1
+

µ

r2
+

1

2
r2 (20)

Use the law of cosines to solve for r1 and expand, dropping small terms:

r2
1 = r2 + µ2 − 2rµ cos(π − θ) (21)

≈ 1 + ∆2 + 2∆ + 2µ cos θ (22)

r−1
1 ≈ 1 + ∆2 − ∆ − µ cos θ . (23)

Similarly,

r2
2 = r2 + 12 − 2r cos θ (24)

=⇒ µ

r2
≈ µ

√

2(1 − cos θ)
. (25)

And since 1
2r2 = 1

2(1 + 2∆ + ∆2),

U ≈ 3
2 + µ( 1√

2(1−cos θ)
− cos θ − 1) + 3

2∆2 (26)

b) Show that to leading order in the radial component of the equation of motion,

3∆ + 2θ̇ ≈ 0. (27)

Since ∂r = ∂∆, dU/dr = 3∆. Then the radial component of the equation of motion
reads:
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∆̈ − (1 + ∆)θ̇2 − 2(1 + ∆)θ̇ = 3∆ . (28)

Use the information provided in the problem to drop all but the leading order terms:

−2θ̇ = 3∆ . (29)

c) Show that to leading order in the azimuthal component of the equation of motion,

θ̈ ≈ −3

2
µ

∂

∂θ

[

1

sin(θ/2)
+ 4 sin2(θ/2)

]

, (30)

where θ < 2π so that sin(θ/2) > 0.

Keep only leading order terms in the azimuthal equation to write:

θ̈ + 2∆̇ ≈ µ
∂

∂θ

[

− cos θ + [2(1 − cos θ)]−1/2
]

(31)

Recall that sin2 φ = (1− cos 2φ)/2 to rewrite the terms in the big square brackets. Then
take the time derivative of (29) to find ∆̇ = −2θ̈/3. Insert to find the equation desired.

d) Derive the integral relation

∆2 +
4

3
µ

[

1

sin(θ/2)
+ 4 sin2(θ/2)

]

= 4µB, (32)

where B is a constant of integration. This equation yields the shape of the tadpole/horseshoe
orbit. Whether the orbit is a tadpole or horseshoe depends on the value of B.

Multiply (30) through by θ̇:

θ̇θ̈ ≈ −3

2
µ

∂θ

∂t

∂

∂θ

(

1

sin(θ/2)
+ 4 sin2(θ/2)

)

(33)

Integrate over time:

1

2
θ̇2 +

3

2
µ

(

1

sin(θ/2)
+ 4 sin2(θ/2)

)

= constant (34)

Use (29) to replace θ̇ with ∆, and let the final constant of integration equal 4µB. The
result is the equation desired.
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e) What value of B = B0 corresponds to the triangular equilibrium points, θ = π/3 (L4)
and θ = 5π/3 (L5)?

At L4 and L5, ∆ = 0 and θ = π/3, 5π/3. Plug these values into (32) to find B = 1 .

f) What value of B = B1 corresponds to the maximal tadpole orbit, i.e., the tadpole
orbit which extends to L3? How close does this orbit get to the secondary? What is its
maximum radial width? For B > B1, the orbit is a horseshoe that encircles L3.

Let’s consider the tadpole orbit in the upper half of the plane. L3 is the turning point,
at which θ ≈ π and θ̇ = 0. The latter relation implies ∆ = 0 by (29). Plugging into (32)

yields B = 5/3 .

The closest approach to m2 occurs at the other turning point, at which (again) θ̇ = 0 =
∆. Then (32) becomes

1

sin(θ/2)
+ 4 sin2(θ/2) = 5

4
[

sin3(θ/2) − 1
]

= 5 [sin(θ/2) − 1]

4 [sin(θ/2) − 1]
[

sin2(θ/2) + sin(θ/2) + 1
]

= 5 [sin(θ/2) − 1]

=⇒ sin(θ/2) =
−1 ±

√
2

2
(35)

Take the upper root (plus sign) for the minimum θ corresponding to closest approach.
The minimum distance dmin to m2 is given by the law of cosines:

d2
min = 1 + (1 − µ)2 − 2(1 − µ) cos θ (36)

dmin ≈
√

2(1 − µ)(1 − cos θ) (37)

Recall again that
√

1 − cos θ =
√

2 sin(θ/2). Insert (35) into our expression for dmin to
find

dmin ≈
√

2 − 1 (38)

The maximum radial width occurs at θ = π/3, according to part (e). There, ∆ =

±
√

8µ/3. Then the total width equals 2
√

8µ/3 .

g) What value of B = B2 corresponds to the maximal horseshoe orbit, i.e., the horseshoe
orbit that approaches the Hill sphere of the secondary? For these orbits, θ and 2π − θ
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achieve minimum values equal to Fµ1/3 where F is a constant of order unity. What is
the maximum radial width of these orbits?

Again, at the turning point, θ̇ = 0 = ∆. Insert into (32) to find B ≈ 2/(3Fµ1/3) . The

maximal radial width occurs at θ = π/3 by (e), and is equal to 2
√

8/(3F )µ1/3 .

h) For B0 < B < B1, calculate the endpoints of small tadpole orbits, i.e., those values
of θ where θ̇ = 0, for tadpole orbits which never stray far from the Lagrange point about
which they librate. Use the relations under (b) and (d). Express the endpoint locations
in terms of B.

If θ̇ = 0, then ∆ = 0. Then (32) reduces to

[

1

sin(θ/2)
+ 4 sin2(θ/2)

]

= 3B, (39)

This is a cubic equation for sin(θ/2). For small tadpole orbits, θ = π/3 + ε , where

ε � 1. Then sin(θ/2) ≈ (1− ε2/8)/2−
√

3ε/4. Insert into (39) and retain terms of order

ε2 to find that the left-hand side of (39) equals 3+9ε2/4. Then ε|end = ±
√

4(B − 1)/3 .

i) Use (b), (d), and (h) to derive an expression for the (slow) period of libration of
small tadpole orbits. You will need to expand the expression in brackets in (d) about
θ = π/3 or θ = 5π/3. Your expression should not depend on the size of the tadpole in
the small tadpole limit. Evaluate this libration period for a Trojan asteroid co-orbiting
with Jupiter.

Employ the expansion in (h) to express (32) and (27) as

θ̇2 + 3µ(3 + 9ε2/4) = 9µB (40)

=⇒ θ̇2 = 9µ[(B − 1) − 3

4
ε2] (41)

Now recognize from (h) that B − 1 = 3ε|2end/4. Then we can write

θ̇2 =
27µ

4
[ε|2end − ε2] =⇒ dθ

√

ε|2end − ε2
=

√

27µ

4
dt (42)

But dθ = dε. The ε-integral from ε = −|ε|end| to ε = |ε|end| equals π. The corresponding
integral over time equals the Plib/2, where Plib is the full libration period. Therefore,

Plib = 2π
√

4
27µ . This expression matches that given in Murray & Dermott (3.151). For
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Jupiter, µ = 10−3. Remember that in our natural units, 2π is equal to the period of the
planet. Jupiter’s orbital period is 12 yr. Then the period of slow libration for Trojans
on small tadpole orbits is about 144 yr.

Problem 3. Isolation of Planetary Embryos

Consider a disk composed of massive planetesimals. The most massive planetesimal has
the largest cross-section for accreting other bodies, not only because it has the largest
geometric radius but also because it possesses the largest gravitational focussing factor.
Thus, the most massive body in the swarm tends to accrete all other bodies in its vicinity.
This problem computes the point at which this initial feeding frenzy stops.

A body of mass M at distance r from a star of mass M∗ can accrete other bodies within
a few Hill radii of its orbit:

∆r = B(M/3M∗)
1/3r

where numerical experiments demonstrate that B ∼ 3.5 − 4 for a quiescent disk of plan-
etesimals (Lissauer 1993, Annual Reviews of Astrophysics, 31, 129). Take σ to be the
surface mass density (mass per unit face-on area) of the planetesimal disk. Derive an
expression for the “isolation mass,” the maximum mass which can accrete within such a
disk at every radius. Evaluate the isolation mass in units of an Earth mass for conditions
appropriate to the minimum-mass solar nebula: σ ∼ 10(r/AU)−3/2 g/ cm2, M∗ = M�.

Take the isolation mass to form from a disk annulus centered at radius r and having
total radial width 2∆r. Assume for now that ∆r � r so that the isolation mass equals
2πσr × 2∆r; we can check this later. By definition, the isolation mass has eaten all it
can eat; i.e.

B

(

4πσr∆r

3M∗

)1/3

r ≈ ∆r (43)

Solve for ∆r:

∆r = B3/2r2
(

4πσ

3M∗

)1/2

(44)

Therefore the isolation mass equals

Miso = (4πBσ)3/2 r3 (3M∗)
−1/2 (45)

Plug into the minimum-mass solar nebula and chug out

Miso = 4 × 1026 g (r/AU)3/4 (46)
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or about 0.06M⊕ at 1 AU, 0.2M⊕ at 5 AU (Jupiter’s location), and 0.7M⊕ at 30 AU
(Neptune’s location). For comparison, the mass of the Earth’s moon equals 0.01M⊕.
Thus, the initial feeding frenzy is thought to yield bodies of between the Moon’s mass
and Earth’s mass throughout the solar system; this initial phase is referred to as the
phase of “runaway growth”; subsequent accretion of bodies in the phase of so-called
“oligarchic growth” is much slower; so slow, in fact, that it is not clear whether Uranus
and Neptune, both of which contain ∼10 M⊕ of solids, could form near their present
positions in times shorter than the estimated lifetimes of protoplanetary disks, ∼107 yr.
See Thommes, Duncan, Levison, & Chambers (1999, Nature, 402, 635) for the most
recent proposal of a solution to this problem.
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