Planetesimal Formation

EC Aaron Lee (Berkeley) Joe Barranco (SFSU) Xylar Asay-Davis (LANL)

Protoplanetary Disks

disk mass ~ 0.001-0.1 stellar mass

Disk surfaces at ~10 AU: Growth to a few microns

McCabe, Duchene, & Ghez 03

Disk interior at ~100 AU: Growth to a few cm

Grain growth

Sticking $v_{\text{stick}} \sim 1 \text{ m/s for } s \sim 1 \mu \text{m}$ Hertz + $v_{\text{stick}} \sim 4 \frac{\gamma^{5/6}}{E^{1/3} \rho^{1/2} s^{5/6}}$

Terminal $v_{\text{term}} \sim \frac{\rho}{\rho_g} \Omega s$ ~ 1 m/s for $s \sim 10 \text{ cm}$

Sticking up to, but not beyond, cm sizes

Chokshi et al. 93, Blum & Wurm 08

Climbing the size ladder

Grain stopping time $t_{stop} \equiv mv_{rel} / F_{drag}$ Dimensionless stopping time $\tau_s \equiv \Omega_{Kepler} t_{stop}$

Gas-particle entrainment

Meter-sized boulders drift inward from 1 AU within 100 yr

Weidenschilling 77 Nakagawa, Sekiya, & Hayashi 86

Gravitational instability

Disk annulus can fragment if Toomre Q ~ 1 $\langle \rho \rangle > \rho_{\rm Toomre} \sim \frac{M_*}{2\pi r^3}$ $> 10^{-7} \,{\rm g} \,{\rm cm}^{-3}$

Clump can resist tidal shear if Roche unstable $\rho > \rho_{\rm Roche} \sim \frac{3.5M_*}{r^3}$ $> 2 \times 10^{-6} \, {\rm g \, cm^{-3}}$

if $\Sigma_g \sim 2000 \,\mathrm{g \, cm^{-2}}$ (minimum – mass solar nebula) if $\Sigma_d / \Sigma_g \sim 10^{-2}$ (height – integrated solar metallicity)

then
$$\rho \sim \frac{\Sigma_g}{h_g} + \frac{\Sigma_d}{h_d}$$

 $\sim 3 \times 10^{-9} \text{g cm}^{-3}$ if $h_d \sim h_g$

 $\frac{\text{Toomre unstable}}{\rho_d/\rho_g \sim 30}$

 $\frac{\text{Roche unstable}}{\rho_d/\rho_g \sim 600}$

<u>"Streaming" instability</u> = linear instability between two fluids interacting frictionally in a disk

growth rates peak for $\tau_{s} \sim 1$

(marginally coupled bodies)

0.1 t = $\tau_{\rm s} = 0.1$ $< \rho_{\rm d} / \rho_{\rm g} > = 1$

Youdin & Goodman 05; Johansen & Youdin 07

Bai & Stone 2011

Gravitational instability in the $\tau_s \ll 1$ (small particle) limit

Self-gravity important when $\rho > \rho_{\text{Toomre}} \sim \frac{M_*}{2\pi r^3}$ $> 10^{-7} \text{ g cm}^{-3}$ at r = 1 AU

if $\Sigma_g \sim 2000 \,\mathrm{g \, cm^{-2}}$ (minimum – mass solar nebula) if $\Sigma_d / \Sigma_g \sim 10^{-2}$ (height – integrated solar metallicity) then $\rho \sim \frac{\Sigma_g}{h_g} + \frac{\Sigma_d}{h_d}$ $\sim 3 \times 10^{-9} \mathrm{g \, cm^{-3}}$ if $h_d \sim h_g$ $\sim 10^{-7} \,\mathrm{g \, cm^{-3}}$ if $h_d \sim 5 \times 10^{-4} h_g$ Can the settled "sublayer" achieve Toomre density $< \rho \,\mathrm{d} / \rho \,\mathrm{g} > \sim 30?$

Safronov 1969 Goldreich & Ward 1973

Kelvin-Helmholtz instability may limit dust settling

$$\Delta v \sim c_s \frac{c_s}{v_{\rm K}} \sim 25 \,{\rm m/s}$$
 nearly independent of r

Weidenschilling 1980

Necessary criterion for K-H instability in Cartesian shear flow:

Richardson $Ri \equiv \frac{g \partial \ln \rho / \partial z}{(\partial v / \partial z)^2} < Ri_{crit} = \frac{1}{4}$

$$= \frac{\omega_{Brunt}^2}{(\partial v/\partial z)^2}$$

If
$$Ri = 1/4$$
,
then $\Delta z \sim \frac{\Delta v}{\Omega} \sim 10^{-2} h_{\rm g}$
 $\rho_d / \rho_q \sim 1$

For small particles well coupled to gas (τ _S << 1):

- 1. Is the Richardson criterion a good predictor of stability?
 - Doesn't formally apply because flow is 3D and rotational
 - Brunt vs. vertical shear vs. Coriolis vs. Kepler shear
 - Coriolis is destabilizing
 - Kepler shear is stabilizing
- 2. How does maximum dust density ρ_d depend on bulk (height-integrated) metallicity Σ_d / Σ_g ?
 - Disk metallicity may be supersolar
 - Host stars of extrasolar planets tend to be metal-rich
 - Planets themselves are metal-rich

Well-coupled gas and dust in a shearing box

Code limitations (so far):

- 1. No self-gravity
 - Use Toomre density as guide for onset of gravitational instability
- 2. Dust and gas are perfectly coupled
 - Restricted to studying stability of given initial conditions

Numerical simulations of dense midplanes

Initial conditions: Spatially constant Ri

Numerical simulations of dense midplanes

Gravitational Instability by Metal Enrichment

Toomre-like densities possible for ~4x bulk solar metallicity, or ~4x more mass than minimum-mass solar nebula

Relaxing constant Ri: Settling from arbitrary initial conditions

Lee et al. 10b

Finding the marginally stable state

Marginally stable states

Local enrichments of metallicity

Modeled metallicities

Guillot et al. 06

Name	$\stackrel{M_{ m planet}}{(M_{\oplus})}$	${M_{ m Z}}^a_{(M_\oplus)}$	$Z_{ m planet}$ $(M_{ m Z}/M_{ m planet})$	$Z_{ m planet}/Z_{\odot}{}^{b}$	$[Fe/H]_*$	$Z_{\rm planet}/Z_*$
HD209458	210	20	0.095	6.35	0.02	6.06
OGLE-TR-56	394	120	0.304	20.3	0.25	11.418
OGLE-TR-113	429	70	0.163	10.9	0.15	7.7
OGLE-TR-132	350	105	0.3	20	0.37	8.531
OGLE-TR-111	168	50	0.297	19.84	0.19	12.81
OGLE-TR-10	200	10	0.05	3.33	0.28	1.75
TrES-1	238	50	0.21	14.0	0.06	12.2
HD149026	114	80	0.70	46.78	0.36	20.42
HD189733	365	30	0.082	5.479	-0.03	5.87
Jupiter	318	10 - 42	0.03 - 0.13	2.0 - 8.8	0	2.0 - 8.8
Saturn	95.2	15 - 30	0.16 - 0.32	11-21	0	11 - 21

Toomre density requires:

Super-solar bulk metallicities $(< 4 x; \Sigma_d / \Sigma_g = 0.05)$

and/or

Disk masses > minimum-mass nebula (< 4 x)

Planetesimal Formation

EC (Berkeley) Aaron Lee (Berkeley) Joe Barranco (SFSU) Xylar Asay-Davis (LANL)

Can dust in disk midplanes become self-gravitating?

Yes, if local bulk metallicity is a few times solar, or if local surface density is a few times minimum-mass solar nebula

Extra Slides

Theory I: Grain growth: Right sign, wrong magnitude

Sticks too well

Problem persists even ifgrains are fractalmonomers are nonspherical

Proposed solution: Replenishment of micron-sized grains (near-IR opacity) by fragmentation

$$\rightarrow$$
 Terminal $v \sim \frac{\mu}{\rho_g} \Omega s$ (bigger is faster)

Accretion
$$\frac{d}{dt}(\mu s^3) \sim \rho_d v s^2 \longrightarrow \dot{s} \sim \frac{\rho_d}{\mu} v$$
 (faster is bigger)

 \rightarrow Exponential growth $s \sim s_0 \exp(\rho_d \Omega t / \rho_g)$ (fastest growth in inner disk)

Since
$$t \sim h/v \longrightarrow s \sim s_0 \exp(\Sigma_d/\mu s)$$

 $s_0 \sim 1 \,\mu m$
 $\mu \sim 1 \,\mathrm{g \, cm^{-3}}$
 $\Sigma_d \sim 10 \,\mathrm{g \, cm^{-2}}$
 $s \sim 1 \,\mathrm{cm}$
 $t \sim 100 \,\mathrm{yr}$
 $v \sim 1 \,\mathrm{m/s}$

1969

Grain growth

 $v_{\rm crit} \sim 1 \,{\rm m/s}$ for $s \sim 1 \,{\mu {\rm m}}$

<u>Repulsion (elastic modulus E)</u> Stress $\sigma \sim E \nabla \xi \sim E \frac{\delta}{a}$ $\sigma \sim \frac{mv}{(\delta/v) \times a^2}$

Repulsive force $F_R \sim \sigma a^2 \sim \mu^{3/5} E^{2/5} s^2 v^{6/5}$ Repulsive energy $U_R \sim F_R \delta$

Adhesion (surface tension γ)

Binding energy $U_B \sim \gamma a^2$ $U_R = U_B \longrightarrow v_{\text{crit}} \sim 4 \frac{\gamma^{5/6}}{E^{1/3} \mu^{1/2} s^{5/6}}$

Hertz 1882, Chokshi et al. 93

