

Critical core masses for various accretion rates

Rafikov 2006

heavy element core

Jupiter Saturn Uranus Neptune

Core or No Core?

 $\begin{array}{l} M, R, J_2, J_4, J_6, \dots \\ + P(\rho) \\ + \text{hydrostatic equilibrium (w/rotation)} \\ \implies \rho(r) \end{array}$

$$\Phi = -\frac{GM}{r} \left(1 - \sum_{n=1}^{\infty} \left(\frac{a}{r} \right)^{2n} J_{2n} P_{2n}(\cos \theta) \right)$$

Giant planet formation by gravitational fragmentation = gravitational instability = "top-down"

Requirements: $Q \sim I$ and $t_{cool} < \Omega^{-1}$

Could be met at large distance > 70 AU

Uncertainties include

- disk temperature
- mass infall rate from surrounding natal envelope
- final planet masses

More easily fragments into brown dwarfs than planets

Degeneracy pressure

The new spectral classes OBAFGKMLT

Cooling curves (standard "hot start")

Hot Jupiters are inflated

Transit radii > Theoretical radii

Burrows et al. 2007

How much = How long ago

Radiative cooling: $L = \sigma T_{e}^{4} 4\pi R^{2} = -Nk \frac{dT_{c}}{dt}$ Not completely degenerate: $R \sim R_{J} \left(1 + \frac{kT_{c}}{\epsilon_{F}}\right)$

Isentrope:
$$s_{\rm e}(T_{\rm e},P_{\rm e}\sim g/\kappa_{\rm e})=s_{\rm c}(T_{\rm c},P_{\rm c}\sim GM^2/R^4)$$

3 equations in 3 unknowns $T_{\rm e}, T_{\rm c}, R$

$$> \frac{L \propto t^{-24/17}}{T_{\rm c} \propto t^{-7/17}}$$

$$R \uparrow T_{\mathbf{c}} \uparrow t \downarrow L \uparrow$$

using more accurate analytic formulae from Burrows & Liebert 93 to increase R by 30%, $t \sim 2 \times 10^7$ yr $L \sim 2 \times 10^{26}$ erg/s

vs. numerical $L \sim 6 \times 10^{26} \, {\rm erg/s}$ Burrows et al. 07

"Easy" problem

Even "easier": When planet is irradiated, actual required L ~ 4 x 10²⁵ erg/s

Induced Current \Rightarrow Ohmic Power

$$\mathbf{F} = \frac{q}{c} \mathbf{v} \times \mathbf{B}$$

$$\varepsilon_{\text{emf}} = W/q = F\ell/q$$

$$I = \varepsilon_{\text{emf}}/R = \varepsilon_{\text{emf}} \frac{\sigma A}{\ell}$$

$$Ohmic P = I\varepsilon_{\text{emf}} = \frac{v^2 B^2 \sigma \ell A}{c^2}$$

$$P = I^2 R$$
$$P = \int \int \int \frac{j^2}{\sigma} \, dV$$

copper 6e7 S/m drinking water 0.0005 to 0.05 S/m

$$\mathbf{j} = \sigma \mathbf{f} = \sigma \left(\frac{\mathbf{v}}{c} \times \mathbf{B} + \mathbf{E} \right)$$

Planetary conductivity

Batygin & Stevenson 10, Spiegel et al. 09

delta ~ 2.3e8 cm (R ~ 1.05e10)

$$\mathbf{v}(r,\theta) = v_{\rm m}\sin\theta\,\phi$$

$$f\frac{L_*}{4\pi a^2}\pi R^2 \sim \frac{\frac{1}{2}\rho v^2 4\pi R^2 h}{R/v} \Rightarrow v^3 \propto L_*/a^2$$

Differential rotation may only be skin deep

If winds extend too deep, Ohmic power > internal luminosity

 $\delta < 0.03R$ for Jupiter (maybe)

Also Taylor-Proudman theorem, plus observed stability of B field, enforces near solid-body rotation in convective interior (maybe) $[P(\rho) \Rightarrow v \text{ constant on cylinders }]$

Liu, Goldreich, & Stevenson 08 see also critique by Glatzmaier 08

$\mathbf{j} = \sigma \mathbf{f} = \sigma \left(\frac{\mathbf{v}}{c} \times \mathbf{B} + \mathbf{E} \right)$ Assume B(R) = 10 G [cf. Jupiter B(R) = 4.2 G]

Elsasser Number = $\frac{\mathcal{O}(\mathbf{j} \times \mathbf{B})/c}{\mathcal{O}(2\rho \mathbf{\Omega} \times \mathbf{v})} \propto \frac{\sigma B^2}{\rho \Omega}$

Elsasser Number $\sim 1 \Rightarrow B^2 \propto \rho \Omega / \sigma$

To reproduce assumed B, assume surface dynamo different from Jupiter

Energy flux scaling : $B^2 \propto \rho^{1/3} q^{2/3}$

Internal flux q for Hot Jupiter $\sim 10^2 q$ for Jupiter

Christensen, Holzwarth, & Reiners 2009

Atmospheric Power

$\mathbf{j} = \sigma \mathbf{f} = \sigma \left(\frac{\mathbf{v}}{c} \times \mathbf{B} + \mathbf{E} \right)$
$\sim \sigma \frac{\mathbf{v}}{c} \times \mathbf{B}$
$P = \int \int \int \frac{j^2}{\sigma} dV$
$\sim \frac{\sigma v^2 B^2}{c^2} 4\pi R^2 \delta$
$\sim 8 \times 10^{27} \mathrm{erg/s}$

Planet	Y	T _{iso} (K)	Z (×solar)	$\mathbb{P}\left[P < 10 \text{ bars}\right](W)$
HD209458b	0.24	1400	1	2.30×10^{19}
HD209458b	0.24	1400	10	7.28×10^{19}
HD209458b	0.24	1700	1	1.14×10^{21}

Power at Radiative-Convective (RC) Boundary

 $P_{\rm RC} = \int \int \frac{j^2}{\sigma} dV$ $\sim \frac{j^2}{2\pi R \times \delta \delta_{\rm RC}}$ $\sigma_{
m RC}$ $\sim P \frac{\sigma}{\sigma_{\rm RC}} \frac{\delta_{\rm RC}}{R} \sim 1 \times 10^{25} {\rm erg/s}$ $\mathbb{P}[P < 10 \text{ bars}](W)$ $\mathbb{P}[P > 10 \text{ bars}](W)$ $\mathbb{P}[P > 100 \text{ bars}](W)$ 2.30×10^{19} 2.23×10^{17} 1.09×10^{16} 7.06×10^{17} 3.43×10^{16} 7.28×10^{19} 5.60×10^{17} 1.14×10^{21} 1.01×10^{19} σ (S/m) 104 10 10-2 102 104 P 104 10-5 R 2 x 107 4 x 107 6 x 107 8 x 107 1 x 10⁸ 0

r (m)

How much extra power and where?

Where : convective interior

Radiativeconvective (RC) boundary

Specific entropy $s = s_{\rm RC} \approx s_{\rm core}$ $\Rightarrow R(s, M)$

Spiegel, Silverio, and Burrows 2009