Planetary Dynamics

Secular ("long-term") dynamics:

Replacing point masses with wires
(longitude-averaged evolution)

Linear secular theory (keeping quadratic terms in Hamiltonian): N planets $\Rightarrow \mathrm{N}$ eccentricity modes

$$
\begin{gathered}
\tilde{\mathbf{z}}_{k \alpha}=e_{k \alpha} \exp \left[i\left(g_{\alpha} t+\beta_{\alpha}\right)\right] \\
\mathbf{z}_{k}=e_{k} \exp \left(i \tilde{\omega}_{k}\right)=\sum_{\alpha=1}^{N} A_{\alpha} \tilde{\mathbf{z}}_{k \alpha}
\end{gathered}
$$

Fomalhaut

Eccentric planet begets eccentric ring

Equilibrium belt orbits are eccentric and aligned with the planet's orbit

line of nodes of the perturbing planet
VLT 8-m with L' Adaptive Optics
$\mathrm{L} \sim 10^{-3.7} \mathrm{~L} \odot, \mathrm{t} \sim 12 \mathrm{Myr} \rightarrow \mathrm{M} \sim 9 \mathrm{MJ}$ semimajor axis 8-I5 AU; consistent with evolving vertical warp

Mode amplitudes vary with time in nonlinear secular theory

Mercury's chaotic orbit (Laskar 96)

Production of hot Jupiters in multi-planet systems by secular chaos (Wu \& Lithwick I0)

Kozzai

$P_{K o z} \simeq P_{1}\left(\frac{m_{0}+m_{1}}{m_{2}}\right)^{\mathrm{L}_{\mathrm{B}}}\left(\frac{a_{2}}{a_{1}}\right)^{3}\left(1-e_{2}^{2}\right)^{3 / 2}$

Neptune-Pluto Orbit-Orbit Resonance

Resonant KBOs (~26\%)

Plutino (3:2) Snapshot

Distribution of Plutinos in the Kuiper Belt

Wave pattern rotates rigidly with Neptune

Resonant clustering of Plutinos (3:2) in the

Epsilon Eridani

 Kuiper Belt

Deriving the chaotic zone width
I. The kick at conjunction

$$
x \ll a
$$

Kick in eccentricity Δe

$$
\begin{aligned}
\Delta e \sim \frac{\Delta v}{v} & \sim \frac{1}{v} \frac{G M_{p}}{x^{2}} \Delta t \\
& \sim \frac{M_{p}}{M_{*}}\left(\frac{a}{x}\right)^{2}
\end{aligned}
$$

Kick in semimajor axis Δx
Use Jacobi constant: $C_{J} \approx-\frac{G M_{*}}{2(a+x)}-\Omega_{p} \sqrt{M_{*}(a+x)\left(1-e^{2}\right)}$

$$
\Rightarrow \frac{x \Delta x}{a^{2}} \sim(\Delta e)^{2} \Rightarrow \frac{\Delta x}{a} \sim\left(\frac{M_{p}}{M_{*}}\right)^{2}\left(\frac{a}{x}\right)^{5}
$$

Constraining a_{p} and M_{p} using the sharp inner belt edge

Chaotic zone width ~ $\left(M_{\text {planet }} / M_{\text {star }}\right)^{2 / 7} a_{\text {planet }}$

Inner belt edge = Outer edge of planet's "chaotic zone"

\square

Resonance Sweeping

$$
\Gamma=\oint p d q=\text { conserved }
$$

$\Gamma_{1}=$ adiabatic invariant over synodic period
$\Gamma_{2}=$ adiabatic invariant over
libration period

Dissipative relaxation of parent bodies onto non-crossing (forced eccentric) orbits

Relaxation occurs during:

- Present-day collisional cascade
- Prior coagulation

$$
e_{\text {forced }}(a)=\frac{b_{3 / 2}^{(2)}\left(a_{\text {planet }} / a\right)}{b_{3 / 2}^{(1)}\left(a_{\text {planet }} / a\right)} e_{\text {planet }}
$$

Planetary chaotic zone
= Region where first-order resonances overlap

Candidate planet (0.5 Jupiter mass)

STScL-PRCB6-39a

not thermal emission from planetary atmosphere

40 RJ reflective dust disk?
Variable H α emission?

HR 8799
A-type star 30-60 Myr old with 4 Super-Jupiters

Orbital resonances afford stability $\mathrm{d}: \mathrm{c}=2: 1$ resonance

Other possibilities include

$$
\begin{aligned}
& d: c: b=4: 2: 1 \\
& e: d: c=4: 2: 1
\end{aligned}
$$

dynamical masses < 20 Jupiter
masses each

Cloudy spectra unlike brown dwarfs

2:1 = Planetary Speedometer

Twotinos Captured Slowly

Twotinos Captured Quickly

$$
t_{\text {migrate }} \equiv a /(d a / d t) \geq 10^{7} \mathrm{yr} \quad t_{\text {migrate }}=10^{6} \mathrm{yr}
$$

inclination of the Earth

Figure 7. The solutions of Laplace for the motion of the planets are combinations of circular and uniform motions with frequencies the precession frequencies g_{i} and s_{i} of the solar system (Table I). The eccentricity es of the Earth is given by $O P$, while the inclination of the Earth with respect to the invariant plane of the solar system (i_{3}) is $O Q$ (Laskar, 1992b).

Pan-STARRS (once a week,
mag 24)
and LSST (once every few days, mag 24.5)

Gemini Planet Imager (GPI) 2012

LSST site

The Kuiper Belt

Kuiper Belt Orbits Projected Perpendicular to Ecliptic

$\mathrm{M} \sim 0.1 \mathrm{M} \oplus$
$t_{\text {collision }} \sim \frac{1}{n \sigma v} \sim 10^{12} \mathrm{yr}$

$3 \mathrm{AU}^{-3}$
$\pi(100 \mathrm{~km})^{2}$
$1 \mathrm{~km} \mathrm{~s}^{-1}$

The Kuiper Belt: The Global View

Deriving the chaotic zone width
Resonance overlap
Resonance spacing
$\frac{\Delta s}{a} \sim\left(\frac{x}{a}\right)^{2}$
if $\Delta x>\Delta s$
i.e., if $x<\left(\frac{M_{p}}{M_{*}}\right)^{2 / 7} a$
then chaos

if $\omega_{\text {planet }}=\omega_{\text {belt }}$ (nested ellipses)

$$
M_{\text {belt }}>M_{\text {parent bodies }} \sim 3 M_{\oplus}
$$

Enough material for gas giant core

$$
\begin{aligned}
& a_{\text {planet }}=115 \mathrm{AU} \\
& \text { then } \quad e_{\text {planet }}=0.12 \\
& M_{\text {planet }}=0.5 M_{\mathrm{J}}
\end{aligned}
$$

Asymmetric capture:

Migration-shifted potentials

Results

- If $M_{\text {planet }} \uparrow$ then $a_{\text {planet }} \downarrow$ Planet position too far from dust belt

$$
\therefore M_{\text {planet }}<3 M_{\mathrm{J}}
$$

- Planet also evacuates Kirkwood-type gaps

Results

- If $M_{\text {planet }} \uparrow$ then $e_{\text {dust }} \uparrow$ Surface brightness profiles broaden too much

$$
\therefore M_{\text {planet }}<3 M_{\mathrm{J}}
$$

- $M_{\text {belt }}>M_{\text {parent bodies }} \sim 3 M_{\oplus}$ Enough material for gas giant core

MGSA ESA and P. Kalas (Universty of Calloma, Betketoy)
STScl-PRCME 39a

$$
\begin{aligned}
& \text { if } \omega_{\text {planet }}=\omega_{\text {belt }} \text { (nested ellipses) } \\
& a_{\text {planet }}=115 \mathrm{AU} \\
& \text { then } \quad e_{\text {planet }}=0.12 \\
& M_{\text {planet }}=0.5 M_{\mathrm{J}}
\end{aligned}
$$

- The Kuiper belt comprises tens of thousands of icy, rocky objects having sizes greater than 100 km
- Many KBOs occupy highly eccentric and inclined orbits that imply a violent past
- Pluto and other Resonant KBOs share special gravitational relationships with Neptune
- Extrasolar debris disks are nascent Kuiper belts
- Belts are gravitationally sculpted by planets

Fomalhaut b: Planet-Debris Disk Interaction

Step 1: Screen parent bodies for gravitational stability

$$
t_{\text {age }} \sim 10^{8} \mathrm{yr}
$$

Step 2: Replace parent bodies with dust grains

$$
\Delta t=t_{\text {collision }}=0.1 \mathrm{Myr}
$$

Step 3: Integrate dust grains with radiative force for collisional lifetime
$t_{\text {collision }} \sim t_{\text {orb }} / \tau \sim 0.1 \mathrm{Myr}$

Parent bodies collide once in system age

Most visible grains are just large enough to avoid stellar blow-out

Collisional Cascade

Distribution of sizes of

 Kuiper belt objects

Results

- If $M_{\text {planet }} \uparrow$ then $a_{\text {planet }} \downarrow$ Planet position too far from dust belt

$$
\therefore M_{\text {planet }}<3 M_{\mathrm{J}}
$$

- Planet also evacuates Kirkwood-type gaps
- $M_{\text {belt }}>M_{\text {parent bodies }} \sim 3 M_{\oplus}$ Enough material for gas giant core

Measuring Debris Disk Masses

850μ m flux consistent w/ $M_{\text {SED }}\left(s_{\text {top }}\right) \sim 0.01 M_{\oplus}$ $q=7 / 2$ (Dohnanyi)

$$
s_{\mathrm{top}} \sim 10 \mathrm{~cm}
$$

$\left[\right.$ from $\left.t_{\text {collision }}\left(s_{\text {top }}\right) \sim t_{\text {age }}\right]$

Packed planetary systems

Signature recorded in Kuiper belt

Numerical simulations of packed planetary systems Solar system-like outcomes emerge from chaos

Stirring of KBOs
 by
 Rogue
 Ice Giants

Short-Period Comets

Raising Sedna's Peri by Stellar Encounters

Typical open cluster

- $n_{*} \sim 4$ stars $/ \mathrm{pc}^{3}\left(R_{1 / 2} \sim 2 \mathrm{pc}\right)$
- $t \sim 200 \mathrm{Myr}$
$\cdot\left\langle v_{*}^{2}\right\rangle^{1 / 2} \sim 1 \mathrm{~km} / \mathrm{s}$

1992 QB I:"Smiley"

Discovery of Kuiper Belt Object (KBO) \#3

David Jewitt (U Hawaii) Jane Luu (UC Berkeley)

Size depends on observed brightness and intrinsic reflectivity (albedo)

Relative Sizes of Large Kuiper Belt Objects

Planetary Protection Mechanism: Orbit-Orbit Resonance

Neptune makes 3 orbits
for every
2 orbits of Pluto

"Dance of the Plutinos"

The Orbit of Sedna

Resonant KBOs

13:10 9:7 14:11 $5: 411: 9 \quad 6: 5 \quad 1: 1$

2003 UB $_{313}$
 "Xena"
 Bigger than Pluto

> Palomar 48-inch / M. Brown, C. Trujillo, \& D. Rabinowitz (Caltech, Yale)

"Dwarf Planets"

I.A.U. definition

(a) orbits the Sun
(b) hydrostatic (round) shape
(c) not a satellite
(d) not cleared its neighborhood

What we know:

- The Kuiper belt.comprises tens of thousands of icy, rocky objects having sizes greater than 100 km
- The Kuiper belt is the source of short-period comets
- Pluto and other Resonant KBOs share special gravitational relationships with Neptune
- Many KBOs, especially large ones, occupy highly eccentric and inclined. orbits that imply a xiolent past
- Other star systems have their own Kuiper belts

First discovered Neptune Trojan (1:1)

1 "Large" Neptune Trojan in 60
$\Rightarrow \sim 10-30$ Large Neptune Trojans
vs. ~ 1 Large Jovian Trojan
("Large" = 130-230 km diameter assuming 12-4\% visual albedo)

based on Mike Brown's survey limits:

I Earth mass at less than 200 AU I Neptune at less than 500 AU
I Jupiter (in reflected light) at less than I000 AU
based on Hipparcos and Tycho-2
cannot be a self-luminous main-sequence star above the hydrogen burning limit
infrared detection of a Jupiter or brown dwarf could be interesting

Theoretical Snapshots of Resonant KBOs

\leftarrow Plutinos 3:2

Twotinos 2: $1 \Rightarrow$

Chianc \& Inrdan 2007

Observational Facts and Theoretical Deductions

1. Pluto is the largest known member of a swarm of billions of outer solar system bodies that supply new comets.
2. Pluto and the Plutinos are locked in an orbital resonance established by Neptune.
3. The orbits of many Kuiper Belt Objects are dynamically excited.
4. Pluto is not alone in having an orbital companion.
