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ABSTRACT

In this Letter we study the utility and limitations of ground-based coronagraphy with adaptive optics (AO).
In very high AO correction regimes, residual speckles are pinned on the diffraction rings of the Airy pattern.
We show that this effect is due to small errors in the complex wave in the focal plane, amplified by the coherent
part of the wave. The statistics of these speckles are fairly well described by a modified Rician distribution. The
variance of the speckles, at high flux and at photon-counting levels, finds simple expressions. The total variance
can be partitioned into two contributions: one that can be suppressed by a coronagraph and one that cannot.
Different regimes can be identified. These results enable us to analyze when a coronagraph can defeat the noise
variance, and they provide a criterion for the effectiveness of such instruments.

Subject headings: atmospheric effects — instrumentation: adaptive optics — techniques: high angular resolution

1. INTRODUCTION

Direct imaging of faint sources near a bright star (exoplanets,
circumstellar disks) is a difficult task and is limited by many
sources of noise, including the speckle noise. The problem is
trying to detect a very faint object (a planet) above a bright
background produced by the star diffraction wings. In the case
of ground-based observations with adaptive optics (AO), the
uncorrected aberrations of the wave front produce random in-
tensity fluctuations of this background (residual speckles). Even
at very high AO corrections, those speckles still exist but are
“pinned” on the first diffraction rings for short-exposure images
(Bloemhof et al. 2001; Sivaramakrishnan et al. 2002; Bloemhof
2003; Perrin et al. 2003). Several nulling or coronagraphic
techniques have been proposed to cancel the starlight and
achieve such a direct detection (e.g., Aime & Soummer 2003),
and projects are under construction or study for ground- or
space-based observations. We focus here on the effect of a
coronagraph on the light fluctuations that limit the detection
of faint sources. We limit the scope of this study to speckle
noise and photon noise, and we leave for future study the other
sources of noise (static or quasi-static aberrations, detector
noise, etc.).

2. STATISTICAL MODEL FOR THE WAVE AMPLITUDE AND
INTENSITY IN THE FOCAL PLANE WITHOUT CORONAGRAPH

Even for high-performance AO systems, the instantaneous
point-spread function (PSF) is not a perfect Airy pattern, and
speckles are pinned on the first rings as illustrated in Fig-
ure 1. These speckles produce a noisy background that limits
the detection of faint sources. The goal of this study is to
evaluate the impact of a coronagraph on the signal-to-noise
ratio (S/N), analyzing the statistics of the intensity in the focal
plane as a function of the radial position. We use a statistical
model that was proposed by Goodman (1975) for the study of
laser speckles and that was applied to AO images by Cagigal
& Canales (1998, 2000) and Canales & Cagigal (1999a, 1999b,
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2001) for the study of the statistics of AO images, as a function
of the degree of correction. We start by describing the wave-
front amplitude in the aperture plane and derive the statistics
of the wave amplitude and of the intensity in the focal plane.

2.1. Statistics of the Wave Amplitude in the Focal Plane

In the general case, the wave-front amplitude at the entrance
pupil can be written as the coherent sum of two terms, a de-
terministic termA corresponding to a perfect plane wave and
a random term corresponding to the uncorrected part ofa(x, y)
the wave front. This term can include either phase or amplitude
errors:

W (x, y) p [A � a(x, y)]P(x, y), (1)1

where the function describes the aperture transmission.P(x, y)
The complex amplitude of the wave in the focal plane is given
by a scaled Fourier transform (FT) of this pupil amplitude
(Goodman 1996):

W (x, y) p FT[W (x, y)] p F [W (x, y)], (2)2 1 x/(lf ), y/(lf ) 1

wheref denotes the telescope focal length,l the monochromatic
wavelength, and the symbol the scaled FT;x andy are usedF
as coordinates in both pupil and field. The focal complex am-
plitude is then

W (x, y) p AF [P(x, y)] � F [a(x, y)P(x, y)]2

p C(x, y) � S(x, y). (3)

The wave amplitude appears as a sum of a deterministic term
C and a random termS, at each position in the focal plane.
The term is proportional to the waveC(x, y) p AF [P(x, y)]
amplitude without atmospheric turbulence (Airy pattern for a
perfect telescope) and is a deterministic spatial function. The
second component is a random term, associated with the speck-
les: . This random term isS(x, y) p F [a(x, y)P(x, y)] S(x, y)
nonhomogeneous; its variance varies in the field.
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Fig. 1.—Illustration of two independent realizations of instantaneous AO
PSFs. Pinned speckles on the diffraction rings are clearly visible. The simulated
image has a Strehl ratio of 90% and was made with the PAOLA software
package (Jolissaint 2004).

Fig. 2.—Illustration of the decentered Gaussian statistics of the wave amplitude , in the focal plane for two arbitrary spatial positions A and B. TheseAW (x, y)S2

figures have been obtained using 3000 independent AO-corrected phase screens provided by the PAOLA software. This illustration uses a perfect Airy pattern
for the deterministic term . Note the decentered Gaussian statistics on the top of the diffraction ring. At the zeros of the term , the statistics becomeaC(r) C(r)
centered circular Gaussian, similar to that of laser speckles without continuous background.

The statistics of the wave amplitude at each position in the
focal plane can be easily derived from this model. The complex
amplitude is computed as a sum of phasors over theS(x, y)
pupil aperture weighted by the random complex term .a(x, y)
Assuming a large enough number of independent values of

, i.e., a large number of coherent cells over the telescopea(x, y)
aperture after AO correction, the complex amplitudeS(x, y)
follows a circular Gaussian distribution whatever the statistics
of , thanks to the central limit theorem. Therefore, thea(x, y)
wave complex amplitude in the focal plane follows aW (x, y)2

circular Gaussian law, decentered by the mean of the amplitude
.AW (x, y)S p C(x, y)2

This problem is formally equivalent to the study of laser speck-
les over a coherent background in the context of holography.
The statistics of were given by Goodman (1975):W (x, y)2

2 21 �[y � C(x, y)] � hP(y, h) p exp , (4){ }2 2pAFS(x, y)F S ! FS(x, y)F 1

wherey andh denote the real and imaginary part ofW (x, y)2

at the position .(x, y)
The deterministic term can be taken as real withoutC(x, y)

loss of generality. For example, in the case of a circular aperture
of diameter D, we obtain the Airy amplitudeC(r) p D/

, with . We give a numerical2 2 1/2[J (pDr)/(2r)] r p (x � y ) /(lf )1

illustration of the statistics of in Figure 2 for two radialW (x, y)2

positionsr.

2.2. Statistics of the Light Intensity in the Focal Plane

The instantaneous intensity in the focal plane is the modulus
squared of the amplitude:

2 2 2 ∗FW (x, y)F p FC(x, y)F � FS(x, y)F � 2 Re [C (x, y)S(x, y)].2

(5)

The term coupling the deterministic and random parts (C and
S) corresponds to the so-called speckle pinning, discussed by
several authors, using a first-order phase expansion (Bloemhof
et al. 2001; Bloemhof 2003, 2004) or higher order expansions
(Sivaramakrishnan et al. 2002; Perrin et al. 2003).

The mean intensity (long-exposure image) is simply the sum
of the deterministic diffraction pattern with a halo produced
by the average of the speckles,

2 2 2AFW (x, y)F S p FC(x, y)F � AFS(x, y)F S p I � I , (6)2 c s

since (circular Gaussian). We use∗ ∗AS(x, y) S p AS(x, y)S p 0
the notations for the intensity of the determin-2I p FC(x, y)Fc

istic part of the wave, proportional to the perfect PSF, and
for the halo created by the speckle average.2I p AFS(x, y)F Ss

The model allows to be a function that varies with the radialIs

distancer, as is the case for an actual AO halo. AO PSF and
halo structures have already been studied (Moffat 1969; Racine
1996; Racine et al. 1999).

At a given position in the focal plane, the pinned speckle
term of equation (5) does not contribute to the mean intensity;
it only contributes to the variance. This variance can be directly
computed using the Gaussian property of . It is, however,S(x, y)
interesting for a better understanding of the phenomenon to
compute first the probability density function (PDF) of the
intensity. In all cases, we emphasize that all these properties
concern the speckle pattern at one point; it is unnecessary to
invoke higher order spatial analysis for such a pointwise anal-
ysis. The PDF for the intensity, known as amodified Rician
density, was given by Goodman (1975) and also used by Ca-
gigal & Canales (1998, 2000, and reference therein):

� �2 I Ic1 I � IcP (I) p exp � I , (7)( )I 0( )I I Is s s
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Fig. 3.—PDF of the light intensity at four different constant background
intensity levels and a single value of . High values of correspondI I p 0.1 Ic s c

to locations near the perfect PSF maxima (rings), and low values of cor-Ic

respond to locations near the zeros of the perfect PSF or far from the core.
For we have the pure speckle exponential statistics. The width of theI p 0c

distribution increases with an increase in the level of . This explains speckleIc

pinning; speckle fluctuations are amplified by the coherent addition of the
perfect part of the wave.

where denotes the zero-order modified Bessel function ofI0

the first kind. Examples of this Rician distribution are shown
in Figure 3, for the same speckle intensity and several levelsIs

of constant intensity , corresponding to different positions inIc

the field: at a given location in the focal plane, will beIc

proportional to the intensity of the perfect PSF (Airy pattern
for a circular aperture). Depending on the amplitude of the
Airy pattern at successive rings, the intensity is alternativelyIc

large and small, and the variance of the speckles is amplified
accordingly. At the zeros of the PSF, no amplification occurs,
and the statistics are equivalent to that of a fully developed
speckle pattern.

Speckle pinning can be easily explained from this result;
speckle fluctuations are amplified by the coherent part of the
wave that can be seen directly on the PDFs, where widths
increase with . Making in equation (7) (at the zerosI I p 0c c

of the perfect PSF), the statistics reduces to the usual negative
exponential density (Fig. 2) that corresponds to the same sta-
tistics as laser speckles. It is important to note that speckle
fluctuations are not canceled but are just not amplified at the
zeros of the perfect PSF (Fig. 1).

The planet adds a constant valuem at its position (over a
small region of the field). Using the approach developed by
Aime (2000), the PDF is simply shifted of the quantitym, so
that

P (I) p P(I � m). (8)I, p I

This shift of the PDF does not change the variance.

3. VARIANCE OF THE INTENSITY

The variance of the intensity at and around the planet location
in the image can be used as a simple criterion to evaluate the
efficiency of a coronagraph. From the statistics of the residual
speckles (eq. [7]), the variance finds a simple expression:

2 2j p I � 2I I . (9)I s s c

This result was obtained by Goodman (1975) for the addition
of a laser speckle pattern with a continuous background, and
it was used by Cagigal & Canales (1998, 2000, and references
herein) for the study of corrected PSF intensity statistics as a
function of the degree of correction. Several routes to this result
exist but are not discussed here. More details are given by
Aime & Soummer (2004).

At low light levels, we must take into account the variance
associated with photodetection (Poisson process), so the total
variance is

2 2 2j p j � j , (10)I P

where is the variance associated with the Poisson statistics.2jP

In our notation, (the variance is equal to the mean2j p I � IP c s

for a Poisson process). The total variance is then

2 2j p I � 2I I � I � I . (11)s s c c s

A planet simply adds its variancem to the total variance, but
this effect will be negligible for very faint sources. For brighter
sources, compared to the level , this term can be added easily.Ic

4. THE UTILITY OF CORONAGRAPHY IN THE PRESENCE
OF RESIDUAL AO SPECKLES.

Our goals are to determine under what conditions the use
of a coronagraph will substantially reduce the speckle variance
and to evaluate the efficiency of such a device. We consider
the use of a perfect coronagraph that can remove the coherent
part of the wave . The coronagraph will be ineffectiveC(x, y)
at removing the speckle part . We first describe in thisS(x, y)
section what gain in S/N can be expected with a perfect system,
and then we discuss the optimal coronagraphic rejection for a
given AO correction and a real coronagraph.

The relevant information to analyze is how a coronagraph
can defeat the noise variance. For that, we can partition the
total variance of equation (11) into two contributions, and2jc

. The first part contains terms that can be affected by a2 2j js c

coronagraph; they are the terms related to the perfect part of
the wave, i.e., corresponding to the term . The second partIc

contains the terms coming from the speckle term only,2j Is s

2 2 2 2j p (2I I � I ) � (I � I ) p j � j , (12)s c c s s c s

with and . Since a coronagraph can2 2 2j p 2I I � I j p I � Ic s c c s s s

only affect the coherent part of the wave, it can onlyC(x, y)
have an effect on the variance , reducing (or canceling) the2jc

term . The variance will remain since the coronagraph will2I jc s

have no effect on .Is

We can identify different regimes from equation (12), com-
paring the values of and . If , which happens eitherI I I K Is c c s

far from the optical axis or with a perfect coronagraph, the
variance reduces to . The level of intensity equal2 2j p I � I Is s s s

to 1 photon pixel�1 is a limit of the regime between speckle
and photon noise (the variance is dominated either by the
speckle noise or by the photon noise).

If , close to the optical axis (on the first few diffractionI k Ic s

rings) or without a coronagraph, the variance becomes2j pc

. One photon per pixel is also a limit of the regime.2I I � Ic s c

The transition domain for leads to the variance2I p I j pc s I

.23I � 2Is s

More generally, the study of the AO images without a co-
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Fig. 4.—Illustration of and , as a function of the radial position in the2 2j jc s

focal plane, without a coronagraph. The simulation is made for a 3.6 m tele-
scope in theH band with a Strehl ratio of 90%, corresponding to the Lyot
Project coronagraph on the AEOS telescope in Hawaii (Oppenheimer et al.
2003, 2004). A coronagraph will be efficient everywhere the variance (solid2jc

line) is greater than (dashed line). This simulation corresponds to a high-2js

flux regime and is independent of the exposure time. PAOLA software
(Jolissaint 2004) was used to simulate the AO.

ronagraph can provide information on the efficiency of a co-
ronagraph. A real coronagraph will be efficient in the part of
the focal field where ; it will reduce the contribution2 2j 1 jc s

, and the ultimate performance will then be the speckle var-2jc

iance . From we can deduce the following criterion2 2 2j j 1 js c s

for the efficiency of a coronagraph:

I (I � 1)s sI 1 . (13)c 2I � 1s

At high flux, , and the condition of equation (13) isI k 1s

equivalent to . At photon-counting rates , this(1)I 1 I /2 I K 1c s s

limit is equivalent to . In both cases, the order of mag-(2)I 1 Ic s

nitude is similar and does not depend on the number of photons.
We can conclude that for either low or high flux, a coronagraph
is efficient in terms of the S/N, as long as in the originalI 1 Ic s

AO images without a coronagraph.
To conclude, the main result is that a coronagraph for a given

telescope and AO should reduce the contribution lower than2jc

everywhere in the field. It is therefore not necessary to build2js

a coronagraph to reduce levels of continuous intensity lowerIc

than the speckle level .Is

The model used is very simple and can be improved, but
our general conclusion is unlikely to change. Several other
noise terms involved in the problem of high dynamic range
imaging have not been taken into account in this study, e.g.,
detector or background noise. Static or quasi-static speckles
from the optics are also an important issue and are not included
in this model.

We give an example in Figure 4 to illustrate our conclusion,
in which a coronagraph could reduce the variance by an order
of magnitude on the first ring and be efficient out to the sevebth
or eightth ring. These numbers are given here for illustration
only and strongly depend on the actual AO characteristics and
performance. The lower the halo and the term , the greater2I js s

the coronagraphic efficiency. This result can help the design
of dedicated AO for coronagraphy; the levels and profiles of

and directly impact the dynamic range and depend on theI Is c

AO characteristics.
This study confirms that a coronagraph is a key element in

a high dynamic range imaging instrument. It will tackle noise

amplification from the continuous background, at high AO per-
formance. Additional speckle reduction techniques are also nec-
essary to defeat the residual noise.
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