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ABSTRACT

Planetary migration poses a serious challenge to theories of planet formation. In gaseous and planetesimal disks,
migration can remove planets as quickly as they form. To explore migration in a planetesimal disk, we combine
analytic and numerical approaches. After deriving general analytic migration rates for isolated planets, we use
N-body simulations to confirm these results for fast and slow migration modes. Migration rates scale as m−1 (for
massive planets) and (1 + (eH/3)3)−1, where m is the mass of a planet and eH is the eccentricity of the background
planetesimals in Hill units. When multiple planets stir the disk, our simulations yield the new result that large-scale
migration ceases. Thus, growing planets do not migrate through planetesimal disks. To extend these results to
migration in gaseous disks, we compare physical interactions and rates. Although migration through a gaseous disk
is an important issue for the formation of gas giants, we conclude that migration has little impact on the formation
of terrestrial planets.
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1. INTRODUCTION

Migration is an important physical process in planet forma-
tion (e.g., Lin & Papaloizou 1986; Ward 1997; Artymowicz
2004; Levison et al. 2007; Papaloizou et al. 2007; Kirsh et al.
2009; D’Angelo et al. 2010; Lubow & Ida 2010, and references
therein). Based on analytic theory and detailed numerical sim-
ulations, several modes of interaction between growing planets
and density perturbations within a disk of gas or within a disk
of planetesimals produce secular evolution of the orbital semi-
major axis, eccentricity, and inclination of a planet. For planets
with masses exceeding ∼0.1 M⊕, derived migration rates have
a broad range, ∼ 10−7–10−4 AU yr−1. On typical timescales of
0.1–1 Myr, planets can migrate through the entire disk.

To explain the frequency of ice giant and gas giant planets
close to their parent stars, migration is essential (Lin et al.
1996; Marzari & Weidenschilling 2002; Ida & Lin 2004; Alibert
et al. 2004). Although there are significant selection biases,
most known exoplanets have semimajor axes, a ! 0.1–1 AU
(data from exoplanet.org and exoplanet.eu). Protostellar disks
probably do not have enough mass to produce ice giants or
gas giants so close to their parent stars (e.g., Bodenheimer
et al. 2000; Kornet et al. 2002). Once these planets form
farther out in the disk, however, they can slowly migrate inward
to close-in orbits around their parent stars (e.g., Ida & Lin
2005; Armitage 2007; Thommes et al. 2008; Mordasini et al.
2009).

Migration may also explain the orbital architecture of the
solar system. Observations of the dynamical structure of the
Kuiper Belt suggest that Neptune migrated outward from its
likely birthplace (Malhotra 1993; Hahn & Malhotra 1999).
Other evidence suggests that the four gas giants formed in a
more compact configuration and then migrated outward (e.g.,
Thommes et al. 2002; Tsiganis et al. 2005; Morbidelli et al.
2008).

Despite these successes, migration is a great challenge for
theories of planet formation. In the current picture, terrestrial
planets and the cores of at least some gas giant planets form

by a coagulation process, where lower mass objects collide
and merge into larger objects. Early on, migration timescales
are long. Without straying too far from their birthplaces,
protoplanets undergo runaway growth—where a few of the
largest objects grow much much faster than other objects—and
then oligarchic growth—where these largest objects grow more
slowly but still faster than much less massive objects (e.g.,
Kokubo & Ida 1998; Goldreich et al. 2004; Kenyon & Bromley
2010, and references therein). As planets begin to reach masses
of ∼0.1 M⊕, however, collision times become longer than
migration times. Thus, theory predicts that the final building
blocks of planets migrate into the central star before they reach
the mass of the Earth (Lin & Papaloizou 1979; Goldreich &
Tremaine 1980; Artymowicz 1993b; Ward 1997; Masset &
Papaloizou 2003; Ida & Lin 2008).

Migration is also a severe problem for the formation of ice
giant and gas giant planets. Once ice giants or gas giants are
fully formed, migration can produce the close-in giant planets
observed around nearby stars (Ida & Lin 2005). However, theory
predicts a more rapid migration of the lower mass building
blocks of ice and gas giants (Ward 1997; Masset & Papaloizou
2003; Ida & Lin 2008; Pepliński et al. 2008a). In the standard
theory, these lower mass planets migrate too fast to produce ice
or gas giants. Solving this problem is a central issue in planet
formation theories.

Theories of migration generally focus on isolated planets
interacting with the disk (see Papaloizou et al. 2007, and
references therein). Recent attempts to understand how real
planets avoid migration concentrate on the physics of this
isolated interaction, including disk dynamics (Masset et al.
2006; Pepliński et al. 2008a; Paardekooper & Papaloizou 2009a,
2009b), magnetic fields (Terquem 2003), orbital eccentricity
(Papaloizou & Larwood 2000), disk thermodynamics (Kley &
Crida 2008; Paardekooper & Mellema 2006b; Paardekooper &
Papaloizou 2008; Kley et al. 2009; Paardekooper et al. 2010,
2011), and turbulence (Nelson & Papaloizou 2004; Adams &
Bloch 2009). While any or all of these processes may reduce
migration rates to acceptable levels, growing protoplanets are
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not isolated. Tightly packed protoplanets probably perturb the
disk differently than systems of widely spaced protoplanets.
Thus, migration rates may depend as much on the local density
of protoplanets as on the scale of specific interactions between
an isolated planet and the disk.

Here, we consider how migration operates in systems of
multiple planets. Building on previous work (e.g., Malhotra
1993; Hahn & Malhotra 1999; Levison et al. 2007; Kirsh
et al. 2009), we examine migration in disks of planetesimals
with single planets (Sections 2.1–2.3) and multiple planets
(Sections 2.4 and 2.5). These results show that migration is
rarely important in planet-forming disks of planetesimals. In
Section 3, we then explore the implications of our results for
(inviscid) planetesimals embedded in (viscous) gaseous disks.
If our assumptions about viscous disks are valid, migration is
rarely important during terrestrial planet formation. However,
it is still an important issue in the formation of ice giant and
gas giant planets. We conclude with a brief summary and
suggestions for further study in Section 4.

2. PLANETARY MIGRATION IN A PLANETESIMAL DISK

Planets migrate through a planetesimal disk as a result of
pairwise exchange of angular momentum between the planet
and individual disk particles (Lin & Papaloizou 1979; Goldreich
& Tremaine 1979, 1980; Artymowicz 1993a). An important
distance scale for this exchange is the planet’s Hill radius,

rH = a
( m

3M

)1/3
, (1)

where a is the planet’s semimajor axis, m is its mass, and M
is the mass of the central star. If the semimajor axis of a disk
particle is a + δr , where δr is its orbital separation from the
planet, then a passing encounter changes the planet’s semimajor
axis by

δã ≈ g(x)
rH

m
, (2)

where x = δr/rH, g(x) is a function that depends on the
geometric shape of the planetesimal’s trajectory relative to
the planet, and the tilde symbol indicates a change in orbital
distance per unit planetesimal mass. Equation (2) asserts that
the dimensions of a particle’s trajectory near the planet scale as
rH; the planet’s recoil conserves momentum and must depend
on 1/m.

To calculate the trajectory function g(x), we consider nearby
particles in the co-orbital zone of the planet and more distant
particles in the small-angle limit. Planetesimals in the co-orbital
zone, with |δr| ! 2rH, follow almost the same orbit as the planet
but get pushed gently toward and away from it on horseshoe
orbits (Dermott & Murray 1981). More distant planetesimals
at |δr| " 4rH stream by the planet and experience small-
angle scattering relative to their Keplerian path. The trajectory
function in these two cases is

g(x) =
{

2x (|x| ! 2; co-orbital),
−32x−5 (|x| " 4; small-angle scattering). (3)

The co-orbital zone result follows from conservation of energy.
When the pair’s relative speed is much greater than the planet’s
escape velocity at closest approach, the small-angle expression
for larger separations follows from two-body scattering theory
(Lin & Papaloizou 1979).

To illustrate this scaling property, we consider a set of
numerical simulations of planetesimals on circular orbits close

Figure 1. Derived change in semimajor axis (da) of a planet after an encounter
with a planetesimal as a function of their initial orbital separation (x) in Hill
units. Objects start 180◦ out of phase on circular orbits, with the planet at a =
1 AU from the central star (1 M'); da (scaled by x5 in the plot) is the resulting
change in a after one synodic period. Planetesimals have masses of 5×10−4 M⊕.
Colors distinguish planet mass: m = 0.125 M⊕ (cyan), 1 M⊕ (black), and 8 M⊕
(magenta); symbol attribute identifies the sense of migration: outward (open) or
inward (filled). The scaling of da with m agrees with Equation (2). The steep
curves are theoretical predictions for the co-orbital zone (Equation (3)); the
horizontal line is from small-angle scattering theory.
(A color version of this figure is available in the online journal.)

to a much more massive planet (similar to Figure 5 in Ida
et al. 2000). Bromley & Kenyon (2006) describe our orbit
integrator (see also Bromley & Kenyon 2011). The planet and
the planetesimal start 180◦ out of phase on circular orbits at
distances a (planet) and a + δr (planetesimal) from the central
1 M' central star. We measure da as the change in a when the
planet and the planetesimal complete a single synodic orbit.

Our results agree very well with the scaling law (Figure 1).
For three planet masses, scaled according to Equation (2), the
calculated δã tracks the prediction well for co-orbital particles
(|x| ! 1.8) and distant particles in the small-angle limit
(|x| " 4). This scaling law begins to break down when the
mass of the planet approaches the mass of the central star, but our
results lend strong support for the “universality” of the trajectory
function g(x).

Orbital separations too distant for co-orbital encounters and
too close for small-angle scattering encounters lead to chaotic
scattering. A formal outer boundary for this limit is

rxing = 2
√

3rH. (4)

Outside this separation, there is an energy–angular-momentum
barrier that prevents chaotic orbit crossings for bodies on
initially circular orbits (Gladman 1993). The inner boundary
is the edge of the co-orbital region; thus, we adopt a chaotic
zone with 1.8rH ! δr ! 3.5rH. Figure 1 shows that particles
in this region do not follow a simple trajectory function as in
Equation (3).

The trajectory of a particle passing by a planet depends on
whether the particle’s approach is inside or outside the orbit of
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Figure 2. As in Figure 1 for planetesimal orbits in the chaotic regime. Colors
indicate mass for 0.125 (cyan), 1 (gray/black), and 5 (magenta) M⊕ planets. The
darker (lighter) shades indicate interactions with planetesimals that are initially
inside (outside) of the planet’s orbit. The lower panel shows the alignment of
these curves after applying the scaling relation in Equation (5), which transforms
da into the “universal” trajectory function, g(x)rH/m.
(A color version of this figure is available in the online journal.)

the planet. This asymmetry is evident in Figure 1, where particles
with large negative x have smaller |da| than particles with large
positive x. We can correct Equation (2) for this property of the
orbits using a first-order Taylor series expansion:

dã ≈
[
g(x) − βx2rH

a

dg

dx

]
rH

m
. (5)

From numerical simulations, we estimate β = 3/8 in the
chaotic regime and β = 9/20 in the small-angle limit. Figure 2
shows δã in simulations with various planet masses and with
planetesimals that start inside and outside of the planet’s orbit.
After normalizing our results using Equation (5), these traces
yield nearly the same “universal” curve g(x).

2.1. Theoretical Migration Rates

To estimate a migration rate from this formalism, we need a
relation for the encounter frequency. Although this frequency
can vary substantially between consecutive passes of the same
planetesimal (Kirsh et al. 2009), a good characteristic number
is the inverse of the synodic period,

1
Tsyn

≈ 3|δr|
2aT

(
1 − 5δr

4a

)
(6)

where T = 2πa3/2/(GM)1/2 is the orbital period of the planet.
The product of this expression and Equation (5) yields a
migration rate per unit mass of planetesimals.

Extending this rate to a disk of planetesimals passing by the
planet requires a surface density distribution for the disk. We
adopt a smooth surface density Σ over an annulus with area
2πrδr . Expanding all terms with r = a + δr in a Taylor series,

keeping only first-order terms in δr , and converting to a form
with x and dx yields an integral for the migration rate:

da

dt
= πa2Σ

M

a

T

∫
|x|g(x) dx

×
[

1 +
(

a

Σ
dΣ
da

− β
x

g

dg

dx
− 1

4

)
rHx

a

]
, (7)

where g(x) is from Equation (3). The surface density Σ is often
parameterized as a power law, with

Σ(a) = Σ0

(a0

a

)n

, (8)

and n = 1–1.5. We use this form of Σ throughout, setting n = 1,
a0 = 1 AU, and Σ0 = 30 g cm−2 unless otherwise specified.

2.1.1. Migration from Small-angle Scattering

To understand the implications of Equation (7), we consider
several simple cases. For distant encounters between a planet
and material in a power-law disk at separations |x| " 4, we
derive the migration rate from Equation (7) with g(x) = −32/x5

and β = 9/20

da

dt
= −32πa2Σ

M

a

T

∫
sgn(x)

dx

x4

×
[
1 + (2 − n)

rHx

a

]
(|x| " 4), (9)

where Σ is evaluated at the planet’s position. If a planet lies
embedded in a large disk where the inner (outer) radii are small
(large) compared to the planet’s semimajor axis, the first term
in the square brackets vanishes; the migration rate then depends
weakly on planet mass through the second term involving rH
(see also Ida et al. 2000; Kirsh et al. 2009). If a planet lies on
the inside or the outside of the disk, the first term dominates.

Provided it is no closer than rxing from the planet,
Equation (9) predicts that a disk situated just inside or outside a
planet’s orbit is repulsive. To confirm this behavior numerically,
we use an N-body code that evolves massive planets, along with
massive planetesimals that interact with the planets but not with
each other (i.e., the disks are not self-gravitating; see Bromley
& Kenyon 2011). For example, a 100 M⊕, n = 1 power-law
disk consisting of 2×105 equal-mass particles between 26.5 AU
and 35.5 AU pushes a 0.3 M⊕ planet at 25 AU inward with a
speed of 0.012 AU/10 kyr (Equation (9)). Simulations of 100
planetary orbits yields 0.0117 ± 0.004 AU/10 kyr. Tests with
a disk inside the planet’s orbit confirm that the planet migrates
outward, as expected from Equation (9).

With this formalism, we can consider an idealized example
of the migration of a planet nestled between two equal-mass
annuli of planetesimals. For a surface density Σ ∝ a−1 and
spacing between the planet and each annulus of δr > rxing,
Equation (9) predicts a net inward migration. For an Earth-mass
planet at 25 AU, between two 0.5 AU annuli centered on 23 AU
and 27 AU, with 50 M⊕ apiece, the theoretical migration rate
is −0.019 AU/10 kyr. Although the planet eventually migrates
through the gap into the inner disk of planetesimals, our numeri-
cal simulation using 1/600 M⊕ planetesimals yields a migration
rate of −0.025 ± 0.002 AU/10 kyr. In this simulation, migration
leads to more interactions with the inner disk of planetesimals
than predicted by the analytic theory; still, this numerical result
agrees reasonably well with the analytic prediction.
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In these examples, the gap between the planet and the disk
spans the chaotic and co-orbital zones. In small-angle scattering,
migration is fairly small, ∼1–2 AU Myr−1. For typical growth
times of ∼1–3 Myr (e.g., Kenyon & Bromley 2006; Bromley
& Kenyon 2011), planets migrate through a small fraction of
the disk.

2.1.2. Fast Migration

For a planet embedded in a planetesimal disk, the co-orbital
zone is much more important than the small-angle scattering
regime (Ward 1991; Ida et al. 2000). Over a complete libration
period of a horseshoe orbit, there is no net migration of a planet
responding to a planetesimal. If the planet is already moving
radially inward (or outward) on a timescale shorter than the
libration period, the situation is different. The planet can then
pull itself along, continually exchanging places with the co-
orbital material in its path. When this mechanism works, it is
efficient and relatively fast.

Simulations performed with our code and other codes (Ida
et al. 2000; Kirsh et al. 2009) suggest that fast migration can
be inward or outward. Kirsh et al. (2009) identify a strong
preference for inward migration. Our calculations confirm
this conclusion; more massive planets also seem to migrate
inward more often than less massive planets. We speculate
that inward migration dominates in most simulations from
the gentle inward push of the weakly scattered disk, whose
influence on a planet increases with m.

The fast migration rate dafast/dt follows from integrating
Equation (7) over the half of the co-orbital zone that a planet
traverses. We adopt this half-width as δr = XcorH, with
Xco = 1.8. However, fast migration occurs only if the rate
allows a planet to clear the co-orbital zone during the libration
period of the planetesimal at the zone’s edge. Otherwise,
the planetesimal orbits back and provides a counter-torque
before the planet migrates away. Large planetary masses have
large co-orbital zones that are hard to traverse in a single
libration period. Thus, this requirement sets a mass limit on fast
migration,

mfast ≈ 4.0
(

2πa2Σ
3M

Xco

1.8

)3/2

M. (10)

In a disk with a surface density of 30 g cm−2 at 1 AU from a
solar mass central star, this limit is mfast ≈ 0.025 M⊕.

To estimate the migration rate for planets more massive than
mfast, we consider a simple model. Fast migration relies on a
planet crossing the co-orbital zone, with size δr ∼ rH, within
a typical synodic period of an orbiting planetesimal. When
m > mfast, the co-orbital zone is too large for the planet to
cross in a single synodic period. Thus, a fraction of the material
in the co-orbital zone has multiple interactions with the planet,
slowing the migration rate. This fraction increases with m; thus,
more massive planets migrate more slowly. To quantify this
statement, we define Xco,fast as the size of the co-orbital zone
for a planet with m = mfast. Planets with m > mfast have larger
co-orbital zones, with Xco > Xco,fast. For these planets, we
assume that planetesimals within a distance Xco,fast of the planet
contribute to migration; co-orbiting planetesimals beyond this
distance do not contribute. Integrating over this annulus, as in
Equation (7), and using rH ∝ m1/3, the attenuation factor scales

Figure 3. Migration of planets with different masses through a planetesimal disk.
The disk is a sea of equal-mass particles, with Σ = 1.2(a/25 AU)−1 g cm−2,
extending from 14.5 AU to 35.5 AU (e.g., Kirsh et al. 2009). Planetesimals have
masses of 1/600th the mass of the planet and initial rms eccentricity of 1 eH.
The three lowest mass planets with m < mfast ≈ 3 M⊕ undergo fast migration
(heavy dashed curve; Equation (13)), until they “bounce” off the inner edge of
the disk. More massive planets migrate more slowly (light dashed curves), at a
rate that scales with mfast/m.

as mfast/m. For m > mfast, migration rates scale inversely with
the mass of the planet.3

Figure 3 illustrates several numerical simulations of fast
migration for planets with a broad range of masses. Following
Kirsh et al. (2009), each planet lies embedded in a power-
law disk extending from 14.5 AU to 35.5 AU with Σ =
1.2(a/25 AU)−1 g cm−2. We represent the disk with particles
that are each 1/600th of the mass of the planet. To speed up the
onset of fast migration, the co-orbital zone (δr # rH) is initially
clear of particles. We also scale the rms planetesimal eccentricity
to keep the same initial e = rH/a for each planet. The nearly
identical migration tracks for masses below mfast ≈ 3 M⊕
illustrate fast migration at the theoretical rate indicated by the
dashed curve. When the planet encounters the inner edge of the
disk, the rates fall to zero (and sometimes reverse sign). More
massive planets follow tracks that reflect the 1/m attenuation of
the fast migration rate for m > mfast.

Several aspects of protoplanetary disks conspire to set limits
on the minimum planet mass for fast migration. In a gaseous disk,
small planetesimals with St < α are entrained in the gas, where
St = rρgΩ/ρcs is the Stokes number, r and ρ are the radius
and mass density of a planetesimal, ρg is the local gas density,
and cs is the sound speed (see Youdin & Lithwick 2007; Chiang
& Youdin 2010; Ormel & Klahr 2010, and references therein).
Fast migration requires that the Hill radius of the planet exceed
the scale height, hs, of the planetesimals. Following Youdin &
Lithwick (2007), hs = h min(1,

√
α/St), where h is the scale

height of the gas and α is the disk viscosity parameter. Adopting
a simple expression for the disk scale height, h = h0(a/1 AU)9/7

(e.g., Kenyon & Hartmann 1987; Chiang & Goldreich 1997) and
requiring hs < rH yields a simple expression for the minimum

3 Using a different approach, Ward (1991) notes that migration saturates
when the planet cannot drift across the co-orbital zone in a synodic period (see
also Paardekooper & Papaloizou 2009a). Our derivation yields the mass
dependence directly.
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mass for fast migration in a gaseous protoplanetary disk

mfast,min " 36fst

(
h0

0.033

)3 ( a

1 AU

)3/4
M⊕ (11)

where fst = min(1, (α/St)3/2). When fst = 1, Equation (11)
yields an approximate condition for fast (type III) migration
through the gaseous disk (e.g., Equation (28); see also Masset
& Papaloizou 2003; D’Angelo et al. 2005; Crida et al. 2006;
Pepliński et al. 2008a, 2008b). When most of the solid material
is in much larger particles with St + 1, lower mass planets
undergo fast migration through the planetesimals. For 1 km
planetesimals with St ∼ 103 and α = 10−2, mfast,min ≈
10−6 M⊕ at 1 AU.

In a planetesimal disk, particle growth sets another limit
on the minimum mass for fast migration. During oligarchic
growth, leftover planetesimals have typical velocity dispersions,
v ≈ εvesc, where vesc is the escape velocity of the largest oligarch
and ε ≈ Σo/Σs is the ratio of the surface density in oligarchs
to the surface density in planetesimals (e.g., Goldreich et al.
2004; Kenyon & Bromley 2008, 2010). The scale height of the
planetesimals is then hs = vΩ−1 ≈ εvescΩ−1, leading to a
simple expression for the ratio of the scale height to the Hill
radius in a disk surrounding a solar-type star

hs

rH
≈ 20ρ1/6ε. (12)

Thus, planets undergo fast migration through planetesimals only
when they contain no more than ∼5% (ε ! 0.05) of the mass in
solid material.

2.1.3. Migration Rate Summary

Here, we summarize the migration rates calculated from
Equation (7) for fast migration (with the reduction factor for
large masses), and for a planet embedded in a disk that moves
relatively slowly through small-angle scattering:

dafast

dt
= ± 3.9

πa2Σ
M

(
Xco

1.8

)3

min (1,mfast/m)
a

T
, (13)

daemb

dt
= −32(2 − n)

πa2Σm

3M2

a2

δR2

a

T
, (14)

= −8
3

(2 − n)
πa2Σ
M

( m

3M

)1/3 r2
xing

δR2

a

T
, (15)

where δR is the physical distance separating the planet and the
edge(s) of the disk. The ± sign for fast migration indicates it
can be either inward or outward, at least for small-mass planets.
In each case, we have kept only leading order terms in rH/a and
have assumed that the inner and outer edges of the disk are far,
far away from the planet.

In a thorough analysis of the orbits of moonlets embedded
in Saturn’s ring system, Crida et al. (2010) derive g(x) in the
chaotic regime. Their Equation (39) for the migration rate has the
same functional form as our Equation (15), including the m1/3

dependence. Because we derive rates in the small-scattering
limit, the numerical coefficient in Equation (15) is a few times
smaller than the equivalent coefficient in the Crida et al. (2010)
rate. Considering the differences in the two approaches, the
agreement in the functional form and the magnitude of the
migration rate is encouraging.

The migration timescale is τ ≡ a/|da/dt |. For a planet
embedded in a power-law disk (Equation (8)), the fast migration
mode and slow, embedded migration yield

τfast(yr) = 2.3 × 104 max (1,m/mfast) (16)

τemb(yr) = 3.6 × 106 (δR/a)2

0.0352

(
m

M⊕

)−1

(17)

= 3.6 × 106 δR2

r2
xing

(
m

M⊕

)−1/3

(18)

for fiducial parameters of M = 1 M', a = 1 AU, and Σ0 =
30 g cm−2. For other situations, these timescales vary as

τ ∝ an−1/2Σ−1
0 Mb, (19)

where b = 1/2 for fast migration with m < mfast, b = 3/2 for
embedded migration at fixed δR/a (Equation (17)), and b =
5/6 for embedded migration at fixed dR/rxing. The dependence
on these parameters is more complicated for attenuated fast
migration, with m > mfast (cf. Equation (10)).

Although fast migration is two orders of magnitude faster than
the slow mode, embedded migration may sometimes dominate.
In Equations (17) and (18), δR is the distance between the planet
and the nearby edges of the disk. By construction, δR > rxing.
If the disk is dynamically warm, all interactions except for the
small-angle scatterings are washed out. In a dynamically cold
disk, a planet might make its own gap by scattering away all
but the more distant material (e.g., Rafikov 2001). These two
situations are similar to type I and type II migration in a gaseous
disk (Section 3).

For many of these migration modes, the power-law variation
of τ with a in Equation (19) yields an integrable expression for
a(t). In all modes of fast migration and embedded migration
with a constant or slowly varying ratio δR/a (e.g., Alexander
& Armitage 2009), we can adopt da/dt = Caγ1 , where
γ1 = 3/2 − n, and derive a simple expression for the time
variation of the semimajor axis

a(t) =
[
− Ct

2γ2−1
+ a(0)1/γ2

]γ2

, (20)

where γ2 = 2/(2n−1). Standard models for the minimum mass
solar nebula (e.g., Weidenschilling 1977; Hayashi 1981) have
n = 3/2; the semimajor axis of the orbit then contracts linearly
with time. Radio observations of young stars are more consistent
with n = 1 (e.g., Andrews & Williams 2007; Isella et al. 2009);
a then contracts quadratically with time. Figure 4 compares our
numerical simulations with the analytic results for a(t).

To apply these results to more realistic disks with planets
and planetesimals, we consider several examples derived from
our planet formation simulations. We begin in Section 2.2 with
disks stirred by growing protoplanets, continue in Section 2.3
with disks declining rapidly in mass, and conclude in Section 2.4
with disks containing many growing planets.

2.2. Stirred Disks

In the planetesimal theory, planets form by accreting smaller
objects along their paths. When planetesimals are large (r "
0.1 km), growing planets gravitationally stir up the orbits
of neighboring planetesimals (Artymowicz 1997; Kenyon &
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Figure 4. Planetary migration in disks with Σ as in Figure 3 and various values
for the initial rms eccentricity. The lower left corner of each panel indicates the
mass of the planet. In each panel, the initial eH varies from 1 to 50 as indicated
in the legend of the lower panel (lighter shades correspond to smaller initial
eccentricity). The dashed curves in the upper panel show predicted rates from
Equation (21).

Luu 1998; Kenyon & Bromley 2002). Thus, growing planets
dynamically heat up the disk. In Hill units, with eH ≡ ea/rH,
ensembles of growing planets rarely produce planetesimals with
eH ! 5, where e is the orbital eccentricity of a planetesimal.
During runaway growth, planets grow to masses of roughly
0.001–0.01 M⊕; the rms eccentricities of planetesimals usually
drop from eH ∼ 100 to eH ∼ 5. Throughout oligarchic growth,
e ∝ εvesc/vK , where vesc is the escape velocity of the most
massive planet, vK is the local circular velocity, and ε is the
ratio of the mass in oligarchs to the mass in planetesimals
(e.g., Kenyon & Luu 1998; Goldreich et al. 2004; Kenyon &
Bromley 2008). In Hill units, eH ∝ εvesc/rH ∝ ε. Thus, eH
grows slowly as oligarchs accrete more and more planetesimals,
reaching eH ∼ 100 during the late stages of oligarchic growth
and throughout chaotic growth (Kenyon & Bromley 2004, 2006,
2008, 2010). Inclinations are typically half of these values.4

In a hot disk, interactions between a planet and surrounding
planetesimals weak, slowing the migration rate by a factor of
(see Ida et al. 2000; Kirsh et al. 2009)

da

dt
" da

dt

∣∣∣∣
eH=0

[1 + (eH/3)3]−1. (21)

To test this prediction, we repeat the calculations for Figure 3 and
vary the rms value of the initial eH for planetesimals from unity
to 50. For larger values of initial eH, migration is undetectable
in a 105 yr time frame. For eH ≈ 10–50, it is a challenge
to prohibit particles from the co-orbital zone at the start
of the simulation. To keep all calculations in this suite on the
same footing, we allow planetesimals for all initial eH to reside
in the co-orbital zone. The fraction of particles in the co-orbital
zone is small; most are not on horseshoe orbits. Still, the onset

4 In a disk where oligarchs grow from collisions with small planetesimals
coupled to the gas, e and i are set through interactions with the gas instead of
stirring by oligarchs (Section 2.1.2). When the gas produces e > eH, migration
slows as in Equation (21).

of the fast migration mode is somewhat slow compared to the
results in Figure 3.

The results of these simulations (Figure 4) follow the trend
expected from Equation (21). Planets embedded in a disk of low-
eccentricity planetesimals migrate rapidly, at a rate that scales
inversely with the mass of the planet (see also Figure 3). As we
raise the initial eH, the migration rate slows. For eH ≈ 50, the
migration rate is negligible. As shown by the dashed lines in the
upper panel of the figure, the reduction in the migration scales
roughly as e−3

H .

2.3. Eroded Disks

As an individual planet migrates through a disk annulus, it
disrupts the disk (Ida et al. 2000; Kirsh et al. 2009). In fast
migration, a planet tosses material into relatively eccentric orbits
in random directions. This scattering process reduces the local
surface density of planetesimals. If the planet moves fast enough
to encounter only the unperturbed disk upstream from it, this
disturbance has little adverse impact on the planet’s migration
rate.

For more massive planets, slower migration may lead to a
continuous loss of disk material. Planets migrate more slowly
in less massive disks. To quantify this effect, we let the disk
surface density within rH of the planet vary as

Σ̇(a, t) = − ε

Tsyn
Σ(a, 0), (22)

where t is the time since a planet reaches a narrow annulus
of the disk at orbital distance a and ε describes the efficiency
of a planet in scattering disk material. To derive the migration
rate for a disk with this exponentially decaying surface density,
we integrate Equation (22) over the time it takes the planet to
migrate a distance rH from Equation (7). Thus, we approximate
the instantaneous surface density by a temporal and spatial
average inside an active zone of width O(rH), where ε ∼ rH/a is
an efficiency factor for clearing the zone of planetesimals. This
approximation leads to a nonlinear equation where the average
value of Σ depends on the migration rate. Solving this equation
leads to a new migration rate

da

dt
≈ 3εr2

H

2aT

[
ln

(
1 − 3εr2

H

2aȧ0T

)]−1

, (23)

where ȧ0 is the theoretical migration rate of the planet without
any time variation in the disk surface density. The sensitivity of
this model to the exact form of ε is fairly weak.

When the argument of the logarithm in Equation (23) is zero,
the migration rate vanishes. Thus, this expression implies a high-
mass cutoff, merode, where more massive planets cannot migrate
through the disk. From Equation (13), this limit is

merode ∼
√

8πa2Σmfast (24)

∼ 0.8
( a

1 AU

)7/4−n/2
M⊕. (25)

If disk erosion is an important process, it begins when a
planet reaches roughly an Earth mass at 1 AU and over 40 M⊕
at 25 AU. Removal of disk material by scattering is at least
enhanced, if not entirely enabled, by secondary scattering from
nearby planets. Migration, in principle, can be virtually halted
for higher mass planets if they have neighbors that prevent the
return of scattered planetesimals.
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Figure 5. Disrupted migration of a planet as a result of stirring by its neighbor.
The planetesimal disk has initial conditions as in Figure 3. Two 0.5 M⊕ planets
have initial separation of 16 rH. Each begins fast migration. The inward motion
of the outer planet stops when it encounters the wake of excited planetesimals
left behind by the inner planet.

2.4. Multiple Planets in a Disk

In the coagulation paradigm, planets grow hierarchically from
smaller planetesimals. As they grow, planets almost always have
neighbors of comparable mass. During runaway and oligarchic
growth, a few large objects try to accrete all of the mass in
an annulus. Once these oligarchs contain roughly half of the
total mass, they begin to interact chaotically (Goldreich et al.
2004; Kenyon & Bromley 2006). During chaotic growth, planets
scatter planetesimals to large eH and grow by large collisions
with other planets (Kenyon & Bromley 2006). Once chaotic
growth begins, smooth migration through a sea of planetesimals
is impossible. Thus, we consider migration in a disk of growing
oligarchs which contain less than half of the mass in solid
material.

Planets affect the migration of a neighboring planet in two
ways. As a planet migrates through a disk, it stirs up the
planetesimals along its orbit. After migrating past these excited
planetesimals, the planet leaves behind a wake of planetesimals
with large eH (see also Edgar & Artymowicz 2004; Kirsh et al.
2009). This wake is a barrier that prevents other planets from
migrating inward from larger a. For a planet migrating through
a disk with initial eH ≈ 1, planetesimals left behind have typical
eH " 3–5. From Equation (21), planets encountering stirred
up planetesimals have factor of 2–6 times smaller migration
rates. In addition, planets migrating into a wake require longer
periods to clear their co-orbital zones of dynamically “hot”
planetesimals. As a result of these factors, migration ceases.

Figure 5 illustrates this phenomenon. Two planets migrate
inward in the fast migration mode; the migration of the outer
planet stops abruptly when it encounters the wake of planetesi-
mals already stirred up by its partner.

Migrating planets can also deflect planetesimals that chaoti-
cally scatter from a neighboring planet. When a planet deflects
planetesimals from its neighbor, it prevents the planetesimals
from returning to the neighbor. The loss of these encounters
prevents the neighbor from migrating toward the planet. Thus,
the two planets recoil from the material that is passed between
them (see also Malhotra 1993; Hahn & Malhotra 1999).

To demonstrate this process, we simulate the migration of
a Saturn-mass planet at 10 AU embedded in a massive disk
(400 M⊕ between 6 AU and 20 AU, with a power-law surface
density distribution and n = 1; see Levison et al. 2007). We then
vary the mass of a second planet at 5 AU. As the mass of the inner
planet falls from a jovian mass to 30 M⊕, the sense of migration
of the outer planet changes from outward (Figure 6; black
curves) to inward (blue curve). Until it encounters scattered

Figure 6. Migration of a Saturn-mass planet in a planetesimal disk with initial
conditions as in Figure 9 of Levison et al. (2007). The disk extends from 6 AU
to 20 AU and has a mass equal to the combined mass of Jupiter and Saturn. The
Saturn-mass planet begins at 10 AU. The inner planet starts at 5 AU and has the
mass of Jupiter (black), Saturn (magenta), and 30 M⊕ (blue). The cyan curve
shows the outer planet migrating through the disk in the absence of any other
planet.
(A color version of this figure is available in the online journal.)

Figure 7. Migration of multiple planets in a planetesimal disk with initial
conditions as in Figure 3 except that the inner edge of the disk is at 5 AU.
Six 0.5 M⊕ planets separated by 16 rH migrate inward until they encounter
the wakes of their inner neighbor. Once the innermost planet reaches ∼10 AU,
its mass exceeds mfast. Because mfast ∝ a3/2, its migration rate then slows
dramatically.
(A color version of this figure is available in the online journal.)

planetesimals from the outer planet, the inner planet slowly
migrates inward at the “adjacent” rate from Equation (9).
Despite its small Hill radius (rH = 0.155 AU), the 30 M⊕ inner
planet has a considerable impact on the migration rate of a much
more massive outer planet 5 AU away. Migration is remarkably
fragile.

To conclude this section, we consider migration in a multi-
planet system. In our simulations of planet formation (e.g.,
Kenyon & Bromley 2006; Bromley & Kenyon 2011), planets
with masses of 0.1–1 M⊕ are often separated by 10–20 mutual
Hill radii. To investigate migration in an idealized version of
these calculations, we simulate the evolution of six 0.5 M⊕
planets in a disk of planetesimals extending from 7–35.5 AU.
As in the calculations for Figure 3, the planetesimals have an
initial surface density distribution Σ = 1.2(a/25 AU)−1 g cm−2.
Unlike the calculations in Figure 3, co-orbital zones are initially
filled with planetesimals.

Figure 7 summarizes the main results of these simulations.
In a multi-planet system, long-term migration rates are small.
Initially, each planet clears its co-orbital zone of material in
3–6×104 yr. Fast migration commences. Eventually, each planet
encounters the ensemble of stirred up planetesimals left behind
by its inward neighbor. Migration stops. In these examples,
migration of the innermost planet ceases when it reaches the
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inner edge of the disk. In disks with small inner radii, migration
of the outer planets ceases well before the inner planet reaches
the inner edge of the disk.

2.5. Migration and Planet Formation

To place these results in the context of formation scenar-
ios, we consider the growth and migration of planets in the
planetesimal theory. In this picture, planetesimals ranging in
size from ∼0.1 km to ∼100 km condense out of the gaseous
disk. Planetesimals collide and merge into larger and larger ob-
jects. After short periods of orderly and runaway growth, the
largest objects enter oligarchic growth, where they continue to
accrete and to stir up leftover planetesimals. During this phase,
dynamical friction between planetesimals and oligarchs domi-
nates dynamical interactions among oligarchs. Thus, oligarchs
remain fairly isolated from one another. Once oligarchs contain
roughly half of the mass in solid material, their mutual dynami-
cal interactions dominate dynamical friction with planetesimals.
Oligarchy ends. Chaotic growth, where oligarchs grow by giant
impacts and continued accretion of small planetesimals, begins
(Goldreich et al. 2004; Kenyon & Bromley 2006)

During the transition from oligarchic to chaotic growth, the
“isolation mass” sets the mass of the largest oligarchs (Lissauer
1987; Kokubo & Ida 1998; Goldreich et al. 2004). By definition,
isolated objects have small dynamical interactions; thus, their
typical separations are ∼BrH with B ≈ 7–10 (Lissauer 1987;
Kokubo & Ida 1998, 2000, 2002). When an object contains
all of the mass in an annulus of width BrH, it reaches the
isolation mass. With miso = 2πaΣBrH and Σ = Σ0a

−n,
miso = (2πBΣ0)3/2(3M)−1/2a3−3n/2. If we adopt a disk with
n = 1, Σ0 = 10 g cm−2, and B = 7, isolated objects have
separations of 2rxing = BrH and lie well outside the co-orbital
zones of their nearest neighbors. The isolation mass is then5

miso = 0.07
(

Σ0

10 g cm−2

)3/2 ( a

1 AU

)3/2
(

1 M'

M

)1/2

M⊕.

(26)
For each oligarch, the ratio of miso to mfast (Equation (10)) sets

the importance, the mode, and the timing of migration through
a sea of planetesimals. Low-mass oligarchs with moli < miso
can migrate, but they cannot migrate freely. The typical radial
spacing of low-mass oligarchs is roli ≈ 7(moli/miso)2/3rH.
With roli - 7rH, an oligarch migrates only a few rH before
it encounters the wakes of other oligarchs. Migration then
ceases. Once massive oligarchs have m " miso, they are free to
migrate. However, massive oligarchs also interact chaotically.
At 1–10 AU, the timescale for chaotic growth is shorter
(longer) than the timescale for slow (fast) migration. When
miso < mfast, migration is important during chaotic growth.
Otherwise, growing oligarchs do not migrate through a sea of
planetesimals.

This analysis suggests that migration through an ensemble of
planetesimals is rarely important within planet-forming disks.
From our definitions of miso and mfast (Equation (10)), the ratio
miso/mfast = 3B2/4 ≈ 37. Although growing oligarchs migrate
in the fast mode, they can never migrate very far before they
encounter the wake of another migrating oligarch. Migration
then ceases (Figures 5 and 7).

5 Our definition is appropriate for the onset of chaotic growth, when eH > 1;
when eH < 1, the alternative of Goldreich et al. (2004) provides a better
measure of the masses of isolated objects.

There are several plausible exceptions to this conclusion. If
collisional damping or gas drag reduce the e and i of stirred up
planetesimals in the wake of a migrating planet, then another
planet can migrate through the wake. When the wake consists
of large planetesimals with r " 0.1 km, however, collisional
damping and gas drag are ineffective. Dynamical friction and
viscous stirring by large planetesimals and small oligarchs
keep particles at large e and i (e.g., Kenyon & Luu 1998;
Goldreich et al. 2004). Thus, oligarchs cannot migrate freely
through a disk of large planetesimals. For smaller particles,
damping may reduce e and i on timescales comparable to the
migration timescale (e.g., Kenyon & Bromley 2001). Because
damping and migration occur on similar timescales, closely
spaced oligarchs probably encounter wakes before damping
can smooth them out. Widely spaced oligarchs suffer chaotic
growth, which keeps planetesimals stirred up despite damping.
Thus, we conclude that damping does not allow migration in a
planetesimal disk.

Scattering may also lead to effective migration (Levison et al.
2007; Raymond et al. 2009a, 2010). During chaotic growth,
massive planets scatter lower mass planets farther out in the
disk (e.g., Marzari & Weidenschilling 2002; Veras et al. 2009;
Raymond et al. 2010; Bromley & Kenyon 2011; Chatterjee
et al. 2010). At large a, oligarchs form slowly (e.g., Kenyon
& Bromley 2008, 2010). Thus, planets formed at small a and
scattered to large a may end up in a calm disk composed of
planetesimals with small eH. Without other oligarchs to impede
them, these scattered planets can then migrate freely through
the outer disk.

Once chaotic growth ends, any leftover planetesimals can
support inward or outward migration. For leftovers with large e
and i, migration rates are slow. However, outwardly migrating
planets may reach planetesimals with much lower e and i,
enhancing migration rates. Several dynamical models for the
origin of the solar system rely on migration through a leftover
planetesimal disk (e.g., Hahn & Malhotra 1999; Tsiganis et al.
2005). As planets migrate outward, they may capture objects
in orbital resonances. This process may yield some dynamical
classes of trans-Neptunian objects (e.g., Morbidelli et al. 2008)
and dense clumps of material in debris disks (e.g., Wyatt 2003;
Wyatt et al. 2005; Martin et al. 2007; Crida et al. 2009).

To conclude this section, Figure 8 compares the variation of
miso and mfast with semimajor axis for a plausible disk model.
We adopt a disk with Σ = Σ0a

−1 and Σ0 = 10 g cm−2 at 1 AU.
Here, we assume a factor of three jump in the surface density
of solid material at the snow line, asnow = 3 AU. We ignore
the likely variation in the position of the snow line with time
(Kennedy & Kenyon 2008). In this disk model, mfast ranges from
0.005 M⊕ at 1 AU to ∼1 M⊕ at 10 AU; miso grows from 0.07 M⊕
at 1 AU to 10 M⊕ at 10 AU. Based on our simulations, low-mass
oligarchs with m < miso are too closely packed to migrate. Prior
to chaotic growth, planetesimals can grow to reasonably massive
oligarchs. With merode > miso at all a, disk erosion is also
unimportant. Once masses reach miso, chaotic growth without
migration leads to terrestrial-mass planets at 1 AU (Raymond
et al. 2005; Kenyon & Bromley 2006; Raymond et al. 2009b)
and Jupiter-mass planets at 3–30 AU (Goldreich et al. 2004;
Bromley & Kenyon 2011).

3. RELATIONSHIP TO MIGRATION IN GASEOUS DISKS

To explore whether our results on migration are general, we
now consider some analogies between migration in gaseous
and planetesimal disks. As motivation, numerical simulations
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Figure 8. Growth and migration modes in a planetesimal disk. The heavy solid
curve and the shaded region indicate the variation of the isolation mass (miso)
with semimajor axis; planets with m < miso (m > miso) undergo oligarchic
(chaotic) growth. The dot-dashed curve indicates the variation of mfast with a;
planets with m < mfast (m > mfast) undergo fast (slow) migration. Until planets
reach miso, they are tightly packed and unable to migrate large distances through
the disk. Once they have m > miso, they are free to migrate in the slow mode.
As planets grow larger than miso, their migration may be slowed by disk erosion,
as indicated by the dotted line (merode).

demonstrate that systems of many oligarchs are likely outcomes
of runaway growth in a planetesimal disk. Although there are
several elegant approaches to the migration of single planets
in a gaseous disk (see Papaloizou et al. 2007, and references
therein), generalizing these approaches to systems of 20–30
(or more) planets with masses comparable to or less than the
isolation mass is challenging (see Cresswell & Nelson 2006,
2008). Here, we try to see whether we can apply results for
planetesimal disks to gaseous disks.

In the limit of zero viscosity, equal mass gaseous and
particle disks provide an identical torque on an embedded planet
(Goldreich & Tremaine 1980). In both types of disk, local
variations in density generate the torque. In a particle disk,
scattering sets the density structure. In a continuous medium,
a balance between gravity, pressure, and viscous forces sets
the density structure. As the viscosity of the medium increases,

this structure damps out. In this heuristic picture, planetesimals
generate migration efficiently; a very viscous medium cannot
generate migration. However, the large mass of a gaseous disk
gives it an overwhelming advantage over a planetesimal disk.
For a solar metallicity system, the gaseous disk is roughly
100 times more massive than the disk of solids.

As predicted by Goldreich & Tremaine (1980), our numerical
simulations produce coherent wakes from orbital resonances
close to embedded planets. In planetesimal disks (Figure 9),
an embedded planet scatters planetesimals out of the co-orbital
zone into disk regions several rH away from the planet. The
region of horseshoe orbits is initially filled (as in Figure 9, left
panel); continued scattering removes planetesimals from the
co-orbital zone (as in Figure 9, right panel). In both panels,
a bridge of enhanced planetesimal density connects the high
density rings of planetesimals lying ±4–5 rH away from the
orbit of the planet. Because the 2:1 resonance lies outside the
disk, the strongest density enhancements lie at the 3:2, 4:3, and
5:4 resonances.

To illustrate the time evolution of these structures, the online
version of this paper contains an animation of a planet migrating
from 25 AU to 15 AU in ∼8×104 yr. Throughout the animation,
the planet scatters planetesimals out of its orbit into various
resonances. Figure 10 shows a snapshot from the animation.
At this point of the evolution, the planet has migrated from
25 AU to ∼20 AU. At 25 AU, the original orbit of the planet
is nearly devoid of planetesimals. Just outside this orbit, the
density of planetesimals is somewhat higher than the initial
density. Between 20 AU and 25 AU, the planet has left
behind a sea of stirred up planetesimals, with several density
enhancements at orbital resonances. At 20 AU, the planet has
evacuated planetesimals downstream from its orbit. Upstream,
planetesimals remain in horseshoe orbits.

The structures in planetesimal disks are similar to those
produced in simulations of gaseous disks (e.g., Bate et al. 2003;
D’Angelo et al. 2003; Klahr & Kley 2006; Paardekooper &
Mellema 2006a). In all of the simulations of planets within
gaseous disks, torques between the planet and the disk create
local enhancements in the gas density at orbital resonances
as well as the bridge of material from the planet to the
bright rings. For disks with similar surface density distributions
and planets with similar masses, the derived range of the

Figure 9. Density wakes in planetesimal disks with an embedded planet. Both images are in a frame rotating with the planet, which has a mass of 16 M⊕ and
a semimajor axis of 25 AU. In the left panel, the corotation zone contains planetesimals; in the right panel, the corotation zone is empty. From the inner edge of
the disk at ∼15 AU to the outer edge at ∼35 AU, the images show the local planetesimal density—averaged over 1 kyr—relative to the initial surface density,
Σ(a) = 30 g cm−2(a/1 AU). In the lower right corner of each image, the scale shows the linear map of density to color. The full range of the color map is a factor of
two in the local mean density.
(A color version of this figure is available in the online journal.)
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Figure 10. As in Figure 9 for a planet experiencing fast migration. This image is a snapshot from a simulation of a 1 M⊕ planet, available in the online version of the
journal. The simulation shows density structures after the planet has moved several AU inward from its initial orbital distance at 25 AU. When the planet is in fast
migration mode, the upstream corotation zone is filled; the downstream region is relatively empty.

(An animation and a color version of this figure are available in the online journal.)

density enhancements are also similar (see, for example, Ward
1997; D’Angelo & Lubow 2008). Because gaseous disks have
some pressure support, co-orbital gas lies a small distance,
δrco ≈ 0.002–0.004a, inside the orbit of a planet (e.g., Tanaka
et al. 2002). When co-orbital gas lies inside the Hill sphere
of the planet (m " 0.03 M⊕), we expect co-orbital gas and
planetesimals with similar surface density to exert similar
torques on a nearby planet. Thus, gaseous and planetesimal
disks should produce comparable migration rates for planets
with m " miso.

3.1. Migration Timescales

To generalize our migration results to a gaseous disk, we
consider the vertical scale height of the disk h as a smoothing
length, which sets the minimum size of density features in the
disk. In type I migration, this assumption limits the scale and the
location of the density wakes that form through interaction with
a relatively small planet. The largest wakes lie at a distance
δR ∼ h + rH. Thus, we can use results for small-angle
scattering. For gaseous disks, the standard type I rate for an
isothermal disk from Tanaka et al. (2002) is

daI

dt
= −(2.7 + 1.1n)

2πa2Σgm

M2

a2

h2

a

T
, (27)

where Σg is the surface density of the gaseous disk at a.
Setting δR ∼ h and assuming the planetesimals and the gas
have the same surface density at the position of the planet,
the ratio of the rate from Equation (14) to this rate is ξI =
16(2 − n)/3(2.7 + 1.1n). Additional features in the Tanaka

et al. (2002) derivation, including three-dimensional effects and
corotation resonances, produce the different dependence on the
surface-density power-law index n. For n= 0.5–1.5, ξI ≈ 2–0.5;
thus, the rates differ by a small numerical factor.6 Clearly, small-
angle-scattering migration in a planetesimal disk and type I
migration in a gaseous disk share general properties.

Type II migration occurs when a relatively massive planet
creates a gap in a gaseous disk and locks into the disk’s viscous
flow as a result of a build-up of material at the gap’s edges.
Gravitational torques exerted on the planet by the disk produce
inward migration. Thus, the planet responds to the instantaneous
density perturbations within the disk. These perturbations are
strongest at the gap edges, which are several rH away from the
planet. The condition for gap opening is an elegant inequality
between m, h, and the disk viscosity parameter α (Crida et al.
2006):

3
4

h

rH
+ 50α

M

m

(
h

a

)2

! 1, (28)

where α = ν/h2Ω, ν is the disk viscosity, and Ω is the angular
velocity (e.g., Pringle 1981). This constraint has a simple
physical interpretation. When the viscosity is small (α → 0),
the first term dominates; planets with Hill radii comparable to
the local disk scale height open a gap (see also Ward 1997;
Lin & Papaloizou 1986, 1993, and references therein). As the
viscosity grows (α → 1), the second term dominates; planets

6 Using the more recent type I rate from D’Angelo & Lubow (2010) yields
similar results.
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with tidal forces large enough to overcome viscous transport
open a gap (e.g., Ward 1997; Bryden et al. 1999).

From the condition for gap opening in the low viscosity limit
and the Tanaka et al. (2002) type I migration rate, Papaloizou
et al. (2007) derive a simple estimate for the maximum type II
rate. For planets with m ≈ 30–1000 M⊕, their simple estimate
agrees with rates derived from detailed numerical simulations
(see Figure 3 of Papaloizou et al. 2007). Adopting δR ≈ rH
in the embedded migration timescale from Equation (18) and
assuming the same Σ, we derive a ratio of rates ξII,α=0 =
32(2 − n)/3(5.4 + 2.2n) ≈ 2.5–0.6 for n = 0.5–1.5. Thus,
both approaches yield the same scaling with rH and magnitudes
consistent to a factor of 2–3. In this limit, irradiation from the
central star sets the scale height of the gas (e.g., Kenyon &
Hartmann 1987; Chiang & Goldreich 1997). Once this scale
is set, the mass of the planet establishes the region of the disk
that interacts most strongly with the planet. In the zero viscosity
limit, planetesimals and gas respond to the gravity of the planet
on the Hill scale, leading to similar timescales.

In the large viscosity limit, our analogy between planetes-
imal and gaseous disks breaks down. Large viscosity enables
a gaseous disk to transport mass inward and angular momen-
tum outward. Viscous transport modifies the universal trajectory
function g(x). Identifying g(x) for viscous transport is beyond
the scope of this paper; however, we speculate that substitut-
ing proper expressions for g(x) and the size of the gap in
Equation (7) would yield a migration rate reasonably close to
published type II rates, da/dt ≈ α(h/a)2aΩ, where Ω is the
angular velocity of the planet at semimajor axis a. Successfully
applying our approach in the largeα limit would link the theories
of migration in gaseous and planetesimal disks.

Type III migration is completely analogous to the fast mi-
gration mode in planetesimal disks (Masset & Papaloizou 2003;
see also Equation (11)). Because it regulates how efficiently ma-
terial is transported across a planet’s orbital position, viscosity
complicates precise comparisons between gaseous and particle
disks. However, viscosity generally makes migration in gaseous
disks less efficient per unit disk mass than in planetesimal disks
(Ida & Lin 2008). As a result, planets with masses much less than
the mass of Saturn are “safe” from type III migration through
the gaseous disk (e.g., Masset & Papaloizou 2003; D’Angelo
et al. 2005; Pepliński et al. 2008a, 2008b).

3.2. Migration with Multiple Planets

In a gaseous disk, there are three sources of torque on an
embedded planet. Torque from an inner spiral density wave
and material in the corotation zone produces a net outward
migration. Material in an outer spiral density wave causes a
net inward migration. As the planet migrates inward, viscous
torques smooth out density perturbations behind the planet.
Smoothing occurs on a local viscous timescale, which is
comparable to the migration rate.

In a multiple planet system, each planet produces a pair of
spiral density waves. Thus, each planet feels a torque from the
spiral density waves of all planets and the gas in its corotation
zone. When planets are widely separated, distant spiral density
waves contribute little to the torque. Widely spaced planets
migrate freely. When planets are tightly packed, many spiral
waves contribute to the torque. In linear theory (e.g., Tanaka
et al. 2002), multiple torques superpose and add to the migration.
However, this approach does not address the response of the
gaseous disk to the time-variable potential of a collection of
closely packed planets. The gravitational potential of the planets

varies on timescales shorter than the viscous timescale, which
should wash out spiral density waves and reduce migration rates.

Recent analyses show that the thermodynamics of the disk is
an important factor in setting the direction and rate of type I mi-
gration (e.g., Paardekooper & Papaloizou 2008; Paardekooper
et al. 2010, 2011). In these nonlinear calculations, migration
of a single planet depends on the vertical temperature structure
and the relative strength of torques from the corotation zone
and the Lindblad resonances. In a multiple planet system, each
corotation zone generally lies within a few Hill radii of a single
planet; thus, closely packed planets may not change the torque
from the corotation zone. Because Lindblad resonances lie many
Hill radii away from a planet, they are easily perturbed by an
ensemble of closely packed planets which change the density
and temperature structure on timescales shorter than the viscous
timescale. Because the disk responds relatively slowly to mo-
tions of the oligarchs, spiral density waves are probably much
weaker in a system with many oligarchs than in a system with a
few oligarchs. Weaker density waves produce smaller migration
rates. By analogy with our simulations of planetesimal disks, we
propose that tightly packed planets do not migrate.

To place quantitative constraints on these limits, we compare
the locations of the resonances that drive migration to the
radial spacing of planets. For type I migration, the gaseous disk
produces the strongest torques at the inner and outer Lindblad
resonances, which lie at orbital distances δaLR ≈ ±2h/3 from
the migrating planet (e.g., Papaloizou et al. 2007). For two
planets separated by r ≈ ±4h/3, their Lindblad resonances
overlap. This tight spacing may preclude the elegant spiral
density waves necessary for type I migration. Planets separated
by rmin ≈ 2h have isolated Lindblad resonances and can migrate
freely. With h ≈ h0 (a/1 AU)9/7 AU (Chiang & Goldreich
1997), this constraint becomes rmin ≈ 0.06 (a/1 AU)9/7 AU for
h0 = 0.03 AU. To convert to Hill units, planets with m ≈ M⊕
have rH ≈ 0.01a. Thus, our constraint is

rmin ≈ 6rH

(
M⊕

m

)1/3 ( a

1 AU

)2/7
. (29)

Numerical simulations do not yet address constraints on
the ability of closely packed planets to undergo type I or
type III migration. Cresswell & Nelson (2006, 2008) consider
ensembles of Earth-mass or larger planets (m " miso) spaced by
roughly 5–7 rH. In their simulations, type I migration is briefly
interrupted by rapid, chaotic interactions among the planets.
Once the planets have merged or scattered, type I migration
continues. Calculations for systems of lower mass planets with
m ! miso do not exist. For now, we assume that ensembles of
lower mass planets with typical separations smaller than rmin do
not migrate.

3.3. Migration and Planet Formation

To establish some constraints on type I migration through
a gaseous disk containing an ensemble of growing planetesi-
mals, we generalize our discussion of isolated oligarchs from
Section 2.5. As planetesimals experience runaway, oligarchic,
and chaotic growth, the gaseous disk evolves with time. In addi-
tion to viscous evolution, photoevaporation and gas giant planet
formation remove mass from the disk (Alexander & Armitage
2009). Observations of young stars suggest typical disk lifetimes
of 1–3 Myr (Haisch et al. 2001; Currie et al. 2009; Kennedy &
Kenyon 2009; Mamajek 2009; Williams & Cieza 2011). Thus,
migration through the gaseous disk ceases after 1–3 Myr.
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Figure 11. As in Figure 8 for a gaseous disk. Curves for isolation mass are also
from Figure 8. Planets with m < msafe (dot-dashed line) migrate on timescales
longer than the lifetime of the gaseous disk. Before they migrate significantly,
the gas disperses. Planets with m < mmin (dashed line) are packed too closely
to migrate through the gaseous disk. Terrestrial planets likely undergo chaotic
growth before they are able to migrate. The cores of gas giant planets start to
migrate as they begin chaotic growth.

The lifetime of the gaseous disk places a rough lower limit on
the masses of planets subject to type I migration. For the linear
calculations of Tanaka et al. (2002), the timescale for type I
migration is τ ∝ m−1. Thus, lower mass planets migrate more
slowly. Setting the timescale in Equation (9) of Papaloizou et al.
(2007) to 3 Myr, we can derive an expression for the masses of
planets that are safe from type I migration

msafe ≈ 0.046
(

h/h0

0.03

)2 ( a

1 AU

)n+1/14
(30)

×
(

Σ0

1700 g cm−2

)−1 (
M

1 M'

)3/2

M⊕, (31)

where we assume a gaseous disk with Σ = Σ0a
−n. Planets

with m < msafe migrate on timescales longer than the typical
disk lifetime. Figure 11 compares the variation of msafe and
miso with semimajor axis. For all a, miso + msafe. Low-mass
oligarchs have long migration timescales; isolated objects are
not safe from type I migration.

Despite their lack of safety, many isolated oligarchs are
packed too tightly together to migrate. To draw this conclusion,
we derive the masses of objects with rmin = 7 rH, the typical
separations of oligarchs at the onset of chaotic growth. Defining
mmin as the mass where rmin = 7 rH

mmin ≈ 0.63
( a

1 AU

)6/7
M⊕. (32)

In our picture, oligarchs with m < mmin are packed too tightly to
undergo type I migration. For a ! 5 AU, mmin " miso; isolated
oligarchs have overlapping Lindblad resonances and are packed
too closely to migrate. At larger a, mmin ! miso; oligarchs do
not have overlapping resonances and can migrate.

This result leads to an important conclusion for terrestrial
planet formation. If the overlapping Lindblad resonances of
tightly packed oligarchs at 1 AU do not generate type I migra-
tion, chaotic growth produces Earth-mass or larger planets on

timescales of ∼10 Myr. In our simulations (e.g., Kenyon &
Bromley 2006), it takes ∼3 × 104 yr (∼105 yr) to produce 5–10
(∼15) oligarchs with m ∼ 0.002–0.004 M⊕ at 0.85–1.15 AU.
These oligarchs are safe from type I migration through the gas
(Figure 11), but their low masses allow fast migration through
the sea of leftover planetesimals. However, growing oligarchs
stir planetesimals to eH " 5. After migrating ∼0.02–0.03 AU,
each oligarch encounters planetesimals stirred up by its inner
neighbor. Relative to the standard fast migration rate, we es-
timate a factor of 10–100 reduction in the migration rate for
each oligarch in our 2006 simulations. On the (reduced) mi-
gration timescale of "106 yr, each oligarch in our simulations
grows by more than an order of magnitude and begins to interact
chaotically with other oligarchs. Once chaotic growth begins,
oligarchs safely grow into terrestrial planets.

As chaotic growth ends, several factors probably prevent
terrestrial planets from migrating through the remnants of the
gaseous disk or the sea of leftover planetesimals. In published
simulations, leftover planetesimals have very large e and i
(Raymond et al. 2005; Kenyon & Bromley 2006; O’Brien et al.
2006; Raymond et al. 2009b); thus, planets can sweep up or
scatter the leftovers faster than they can migrate through them.
For typical disk lifetimes of 1–3 Myr, the reduced surface density
lowers migration rates through the gas by factors of 10 or more.
Migration times are then longer than the disk lifetime, saving
terrestrial planets from type I migration through the gas.

Formation outcomes for gas giant planets are less clear. In our
picture, isolated oligarchs at 5–10 AU will migrate little through
a sea of leftover planetesimals. As chaotic growth begins, these
objects start to experience type I migration through the gas.
The relative importance of chaotic growth and migration then
depends on several factors.

1. The masses of leftover planetesimals. Although oligarchs
with gaseous atmospheres accrete small planetesimals
rapidly (Inaba & Ikoma 2003; Chambers 2006a; Bromley &
Kenyon 2011), they cannot accrete large planetesimals on
timescales shorter than the migration time (e.g., Chambers
2006b, 2008). Collisional grinding can reduce the sizes of
large planetesimals, enabling rapid accretion and the for-
mation of 5–10 M⊕ cores on very short timescales (Kenyon
& Bromley 2009). Thus, rapid core formation depends on
the evolution of the size distribution of planetesimals during
oligarchic and chaotic growth.

2. The response of the disk to tightly packed oligarchs. When
oligarchs are tightly packed, their Lindblad resonances
overlap. By analogy with our calculations of migration
through a sea of planetesimals, we speculate that tightly
packed oligarchs cannot migrate. However, there is no
analytic or numerical study of type I migration in gaseous
disks with tightly packed oligarchs. If tightly packed
oligarchs migrate at the “standard” type I rate, then they
migrate faster than they grow. If tightly packed oligarchs
(and leftover planetesimals) reduce the type I migration
rate, then they probably grow faster than they migrate.

3. The response of the disk to planets accreting gas. Once
planets reach masses of 1–10 M⊕, they begin to accrete
material from the disk (Mizuno 1980; Stevenson 1982;
Ikoma et al. 2000; Rafikov 2006; Hori & Ikoma 2010). At
5 AU, the nominal migration timescale for 10 M⊕ planets is
∼5×104 yr, shorter than the accretion timescale of "105 yr
(Pollack et al. 1996; Bodenheimer et al. 2000; Kornet
et al. 2002; Papaloizou et al. 2007; Bromley & Kenyon
2011). However, this planet may not migrate so quickly.
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Figure 12. Migration in gaseous and planetesimal disks. In a planetesimal disk
(left panel), planets with m < miso are packed too closely to migrate. When
m > miso, chaotic growth dominates migration. In a gaseous disk (right panel),
planets are spaced too closely to migrate when m < mmin. Once m > mmin,
planets grow chaotically as they migrate. The relative importance of chaotic
growth and migration probably depends on the response of the disk to smaller
oligarchs and leftover planetesimals.
(A color version of this figure is available in the online journal.)

When the size of the corotation zone is comparable to
the disk scale height, the disk may not be able to launch
coherent density waves for type I migration. If corotation
torques are important, migration may stall until the planet
reaches larger masses, forms a gap in the disk, and begins
type II migration (Masset et al. 2006).

4. DISCUSSION

Figure 12 summarizes the main conclusions of our analysis.
When planets grow in a planetesimal disk (left panel), interac-
tions between closely packed oligarchs (m < miso) or between
chaotic oligarchs (m > miso) limit migration through a sea of
planetesimals. Thus, the building blocks of terrestrial planets
and ice or gas giant planets are safe from this form of migration.

In a gaseous disk (right panel), we speculate that low-mass
planets (m < mmin) are packed too closely to undergo type I
migration. If this constraint is correct, the building blocks of
terrestrial planets rarely undergo type I migration. Once they
are fully formed, terrestrial planets can migrate through the
disk. However, the reduced surface density of the disk then
limits migration to small radial distances.

Even with these constraints, type I migration is still an issue
for the building blocks of gas giant planets. At 5–10 AU, gas
giant planet formation depends on the relative importance of
migration and chaotic growth. If chaotic growth dominates, the
cores of gas giants can form before they migrate. If migration
dominates, planets must accrete enough material to begin to
accrete gas before they migrate into the central star.

Improving these conclusions requires a better understanding
of the transition from oligarchic growth to chaotic growth. Dur-
ing the early stages of oligarchic growth, oligarchs are closely
packed within a fairly uniform sea of stirred up planetesimals
embedded in a fairly uniform gaseous disk. As oligarchs grow,
they become more and more isolated. As they become isolated,
oligarchs push the excited planetesimals out of their orbits (e.g.,
Rafikov 2001). This evolution creates two types of density per-
turbations within the disk.

1. At the onset of chaotic growth, closely packed oligarchs
contain roughly 50% of the mass of solids. These oligarchs
create point-like density enhancements in the surface den-
sity distribution of the solids.

2. Planetesimals contain the other half of the solid material in
the disk. Planetesimals tend to concentrate in rings between
the orbits of the oligarchs.

Thus, the surface density distribution of the solids is fairly
rippled, with planetesimals concentrated in the peaks of
the ripples and oligarchs orbiting within the troughs of the
ripples.

Current theory addresses the response of the gaseous disk to
isolated oligarchs. For a standard viscous disk, analytic results
and numerical simulations yield reasonably robust solutions to
the structure of a gaseous disk with an ensemble of widely
spaced oligarchs (e.g., Papaloizou et al. 2007; Cresswell &
Nelson 2008; Lubow & Ida 2010). Despite many remaining
uncertainties in treating the (thermo)dynamics of the gas, the
eccentricity of the oligarchs, magnetic fields, turbulence, and
other phenomena, interactions between isolated oligarchs and
the disk clearly lead to migration.

Although the planetesimal theory predicts ensembles of
closely packed oligarchs, migration theory does not address the
structure of the gaseous disk at the onset of chaotic growth.
Closely packed oligarchs clearly cannot migrate through a
planetesimal disk (Figure 7). We speculate that overlapping
Lindblad resonances prevent migration through a gaseous disk.
New analytic and numerical approaches are required to test
this idea.

Migration theory also does not include the response of
the disk to the ensemble of leftover planetesimals. Analytic
solutions suggest that oligarchs create gaps in the surface density
distribution of planetesimals (Rafikov 2001). Many numerical
simulations show that growing oligarchs push away and scatter
leftover planetesimals (e.g., Malhotra 1993; Kokubo & Ida
1998; Morbidelli et al. 2008; Kirsh et al. 2009, and references
therein). With ∼50% of the solid mass at the onset of chaotic
growth, structure in the spatial distribution of planetesimals
probably leads to density waves within the gas. Density waves
from individual planetesimals probably have negligible impact
on oligarchs or planetesimals. However, density waves from the
ensemble of planetesimals can interact with oligarchs orbiting
several rH away. It is not clear whether this interaction impacts
migration significantly; however, including the behavior of
planetesimals is necessary for a complete theory of migration
through a gaseous disk.

Addressing the response of the disk to closely packed
oligarchs and to leftover planetesimals will improve our un-
derstanding of planet formation. Despite our good working
knowledge of the growth of oligarchs from planetesimals (e.g.,
Wetherill & Stewart 1993; Kenyon & Bromley 2008, 2010), the
formation of planetesimals (e.g., Youdin 2010), the transition
from oligarchy to chaos (e.g., Goldreich et al. 2004; Kenyon
& Bromley 2006), and the long-term evolution of fully formed
planets within a gaseous disk (e.g., Ida & Lin 2005; Papaloizou
et al. 2007; Lubow & Ida 2010) are less robust aspects of the
theory. Complete numerical simulations of migration with a
gaseous disk, closely packed oligarchs, and a sea of leftover
planetesimals are beyond the capabilities of current comput-
ers. Smaller simulations of disks with rings of planetesimals
and a few oligarchs are possible and would begin to address
how planetesimals might change migration rates through the
disk.

13



The Astrophysical Journal, 735:29 (15pp), 2011 July 1 Bromley & Kenyon

5. SUMMARY

We have used analytic results and numerical simulations to
explore aspects of migration in protostellar disks.

1. We derive “universal” rates for isolated planets migrating
rapidly, Equation (13), or slowly, Equation (14), through a
disk of planetesimals. When the mass of the planet is much
much smaller than the mass of the central star, these rates
agree with comprehensive numerical simulations and with
rates derived from previous studies (e.g., Ida et al. 2000;
Levison et al. 2007; Kirsh et al. 2009; Bromley & Kenyon
2011). We derive an upper limit mfast (Equation (10)) on the
mass of a rapidly migrating planet. In a disk with surface
density Σ = 30 g cm−2 at a = 1 AU, mfast ≈ 0.025 M⊕;
for Σ ∝ a−1, mfast ∝ a−3. When m > mfast, fast migration
rates are inversely proportional to the mass of the planet
(Figure 3). This result is new.

2. Tests of planets migrating through a disk of stirred up
planetesimals verify that rates scale with the eccentricity
of background planetesimals in Hill units, e−3

H (Figure 4;
see also Ida et al. 2000; Kirsh et al. 2009).

3. The strong scaling with eH suggests that planets cannot
migrate through the wakes of stirred up planetesimals
left behind by another migrating planet. Several tests
confirm this hypothesis (Figures 5–7). Thus, closely packed
oligarchs do not migrate. This result is also new.

4. When a newly formed planet migrates or is scattered into
a region where planetesimals have small eH, this isolated
planet can migrate through a large part of the disk (see also
Malhotra 1993; Levison et al. 2007).

We use some simple arguments to generalize these results to
migration through a gaseous disk.

1. Adopting the disk scale height h as the scale for density
perturbations in the disk, we show that rates for type I,
type II (in the zero viscosity limit), and type III migration
through gaseous disks are similar in magnitude and scaling
to rates through planetesimal disks.

2. If closely packed oligarchs migrate as poorly through
gaseous disks as they migrate through planetesimal disks,
we derive limits on the masses of oligarchs that un-
dergo type I migration through disks with surface density
Σ = Σ0a

−1.

Combining these results into a single diagram (Figure 12),
we conclude that type I migration is an important issue during
the formation of gas giant planets. The building blocks of
these planets are probably safe until they reach the isolation
mass (miso; Equation (26)). Once their masses exceed miso, the
migration rate depends on how the gas responds to the mass
distribution of smaller oligarchs and leftover planetesimals.
Addressing this issue requires new analyses.

For terrestrial planets, we conclude that type I migration is
unimportant. Throughout oligarchic and chaotic growth, the
building blocks of rocky planets are packed too closely to
migrate. Once these planets are fully formed, the surface density
of the gas is probably too low to support type I migration. Thus,
our analysis suggests that standard calculations of terrestrial
planet formation without migration yield robust estimates of the
formation timescale and orbital properties of terrestrial planets.

Advice and comments from M. Duncan, M. Geller,
D. Kirsh, S. Tremaine, A. Youdin, and the anonymous referee
greatly improved our presentation. Portions of this project were
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