
A&A 455, 509–519 (2006)
DOI: 10.1051/0004-6361:20064907
c© ESO 2006

Astronomy
&

Astrophysics

Dust distributions in debris disks:
effects of gravity, radiation pressure and collisions�

A. V. Krivov1, T. Löhne1, and M. Sremčević2
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ABSTRACT

We model a typical debris disk, treated as an idealized ensemble of dust particles, exposed to stellar gravity and direct radiation
pressure and experiencing fragmenting collisions. Applying the kinetic method of statistical physics, written in orbital elements,
we calculate size and spatial distibutions expected in a steady-state disk, investigate timescales needed to reach the steady state,
and calculate mass loss rates. Particular numerical examples are given for the debris disk around Vega. The disk should comprise
a population of larger grains in bound orbits and a population of smaller particles in hyperbolic orbits. The cross section area is
dominated by the smallest grains that still can stay in bound orbits, for Vega about 10 µm in radius. The size distribution is wavy,
implying secondary peaks in the size distribution at larger sizes. The radial profile of the pole-on surface density or the optical depth
in the steady-state disk has a power-law index between about −1 and −2. It cannot be much steeper even if dust production is confined
to a narrow planetesimal belt, because collisional grinding produces smaller and smaller grains, and radiation pressure pumps up their
orbital eccentricities and spreads them outward, which flattens the radial profile. The timescales to reach a steady state depend on
grain sizes and distance from the star. For Vega, they are about 1 Myr for grains up to some hundred µm at 100 AU. The total mass of
the Vega disk needed to produce the observed amount of micron and submillimeter-sized dust does not exceed several earth masses
for an upper size limit of parent bodies of about 1 km. The collisional depletion of the disk occurs on Gyr timescales.
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1. Introduction

Debris disks are solar system-sized, gas-poor dust disks found
around hundreds of main-sequence stars through infrared ex-
cesses and, in a dozen cases, directly resolved at different wave-
lengths, from the visual to submillimeter (see, e.g., Greaves
2005, for recent review). Simple estimates show that the lifetime
of dust grains in these systems cannot exceed ∼1 Myr, implying
that the dust material in debris disks is not primordial and must
be steadily replenished by internal sources. It is widely believed
therefore that debris disks are created and maintained by mutual
collisions (Weissman 1984) and, possibly, comet-type activity
of small bodies (Beust et al. 1989), similar to asteroids, comets,
and Kuiper belt objects in the solar system. The dust material
evolves then through a collisional cascade under the action of
stellar gravity and radiation pressure forces.

Debris disks must be clearly distinguished from protoplane-
tary disks – denser disks with a high gas content around young
T Tauri and Herbig Ae/Be stars. These disks are thought to be
made of primordial material from which the central star has
formed and planets should form, but the planet formation pro-
cess is still ongoing. The physics of the dust component in pro-
toplanetary disks are completely different (gas-driven dust dy-
namics, grain growth, etc.). These disks are not the subject of
this paper.

Stimulated by a growing bulk of observational data on
debris disks, substantial effort has been invested into their

� Appendix A is only available in electronic form at
http://www.edpsciences.org

theoretical studies. Many authors focused on modeling of inner
gaps and substructure found in most of the debris disks and at-
tributed to the gravity of presumed planets (Wyatt et al. 1999;
Ozernoy et al. 2000; Moro-Martín & Malhotra 2002; Quillen
& Thorndike 2002; Wyatt & Dent 2002; Wilner et al. 2002;
Kuchner & Holman 2003; Moran et al. 2004; Deller & Maddison
2005, among others). A number of studies dealt with dynamics
of disks at transitional phases between protoplanetary and de-
bris disks, exemplified by β Pic, AU Mic, HR4796A and simi-
lar objects, which may have retained gas in moderate amounts,
still sufficient to influence the dust dynamics (e.g., Takeuchi
& Artymowicz 2001; Thébault & Augereau 2005). Kenyon &
Bromley (2005) studied non-stationary processes in debris disks
– consequences of major planetesimal collisions for the dust dis-
tributions.

Ironically, these – in fact more complicated – cases receive
more attention than the underlying “regular” debris disks. In this
paper, we treat a debris disk as an ensemble of dust particles, ex-
posed to stellar gravity and radiation and experiencing fragment-
ing collisions and try to identify essential, generic properties of
such an idealized debris disk. The goal is to find out what kind
of size/mass and spatial distributions of the disk material can be
expected from theory, and how these distributions might depend
on distributions of the parent bodies, parameters of the central
star, and grain properties. We therefore do not try to construct
realistic, but very sophisticated models of specific objects, and
seek more general models. Studies of this kind were done, e.g.,
by Krivov et al. (2000), Dominik & Decin (2003), Thébault et al.
(2003), Wyatt (2005).
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Specific application is made to the disk around Vega. This
disk is observed pole-on and does not show any clear substruc-
ture in the infrared images (Su et al. 2005), which makes it an
ideal application of the model.

Section 2 describes the basic physical processes acting on
the dust grains: stellar gravity, direct radiation pressure, and de-
structive intraparticle collisions. In Sect. 3, we present the ki-
netic model used to calculate the resulting dust distributions.
Numerical results for the Vega disk are presented and discussed
in Sect. 4. Section 5 lists our conclusions.

2. Physical processes and grain dynamics

2.1. Stellar gravity and radiation pressure

The main force acting upon macroscopic material and keeping it
on closed orbits is the central star’s gravity:

Fgrav = −GMm
r3

r, (1)

where G is the gravitational constant, M the stellar mass,
and m the grain mass. Another force considered here is radia-
tion pressure caused by the central star. At its simplest, it shows
the same first-order r−2-behavior, but is pointed outward along r.
Because of this proportionality between the two forces the total
photogravitational force can be written as

Fpg = −GM(1 − β)m
r3

r. (2)

Here, β is the ratio between radiation pressure and gravitational
pull and is a constant depending on the grain size and optical
properties.

In old systems with the optical depth τ less than
roughly 10−5, exemplified by the presumed solar system’s debris
disk in the Kuiper belt region, the Poynting-Robertson (P-R) ef-
fect causes migration of smaller grains toward the primary star
where they evaporate, while larger grains are typically lost to
mutual collisions (Grün et al. 1985). If τ > 10−5 (all observable
extrasolar disks), P-R drag is inefficient, as the collisional life-
times are much shorter than the P-R times (Krivov et al. 2000;
Wyatt 2005).

To evaluate the direct radiation pressure, one has to spec-
ify the properties of the grains to be treated. Here we assume
compact grains of spherical shape that are characterized by their
size or radius s, mass density ρ, and pressure efficiency Qpr.
The last coefficient controls the fraction of the momentum trans-
ferred from the infalling radiation to the grain. The theoreti-
cal values range from 0 for perfect transmitters to 2 for perfect
backscatterers. An ideal absorber’s radiation pressure efficiency
equals unity, the value adopted here. Then, the β-ratio is given
by (Burns et al. 1979)

β =
3LQpr

16πGMcsρ
= 0.574 · L

L�
· M�

M
· 1 g/cm3

ρ
· 1 µm

s
, (3)

where L/L� and M/M� are luminosity and mass of the star in
solar units.

The smaller or the less dense the grains are, the more the ra-
diation pressure they experience compensates the central star’s
gravity. Below the critical size where β = 1 the effective force
is repelling, and the grains can no longer be held on bound or-
bits. Larger grains with β < 1 orbit the star on Keplerian tra-
jectories at velocities reduced by a factor of

√
1 − β compared

to macroscopic bodies (β � 1), which are purely under the

Fig. 1. Three possible types of orbits of dust particles under the com-
bined action of stellar gravity and direct radiation pressure. For illustra-
tive purposes, grains are assumed to be released from a circular orbit.

influence of gravitation. If, by fragmentation or any other ero-
sive process, smaller particles are released from larger ones, in
the first instance, they move along with their source due to a
relative velocity close to zero. But the actual elements of their
new orbits depend on their response to radiation pressure, which
leads to separation of the fragments. A parent body on a circu-
lar orbit, for example, releases fragments into bound elliptic or-
bits with larger semimajor axes and eccentricities up to β = 0.5.
Beyond this limit the grains are unbound and leave the system
on normal (β < 1) or “anomalous” (i.e., open outward, β > 1)
hyperbolic orbits (Fig. 1). For parent bodies in elliptic orbits,
the boundaries between different types of orbits are somewhat
smeared. Figure 2 depicts critical grain radii that separate par-
ticles in bound and hyperbolic orbits, as a function of the star’s
luminosity, for parent bodies with different orbital eccentricities.
Borrowing the terminology from solar system studies (Zook &
Berg 1975), we will call dust grains in bound and unbound orbits
α-meteoroids and β-meteoroids, respectively.

2.2. Binary collisions

In contrast to protoplanetary disks, collisions in optically
thin, gas-poor debris disks occur at high relative velocities
(>∼1 km s−1) and are, therefore, destructive and create smaller
fragments. Removal of fine debris by stellar radiation pressure is
the main loss “channel” of material in such systems. So the ques-
tions to be addressed are: when or how often do grains collide?
and: what happens if they collide?

The first question deals with the probability that two (spher-
ical) objects on Keplerian orbits come close enough to touch.
This probability can be expressed as a product of a purely geo-
metric factor ∆, describing the overlap of two orbits, the density
of grains at the desired location in the space of orbital elements,
the relative or impact velocity vimp, and the cross section σ for
the collision, which is basically π(sp+st)2, where sp and st are the
radii of target and projectile, respectively (Krivov et al. 2005).

The answer to the second question depends on the physics of
the impact and fragmentation process. As said above, the impact
velocities easily exceed 1 km s−1, involving too much kinetic en-
ergy to allow the grains to stick together. Instead, the particles
tend to destroy each other, producing smaller fragments, whose
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Fig. 2. Grain radius that separates particles in bound and hyperbolic or-
bits, as a function of the star’s luminosity (assuming dust bulk density
of 2 g cm−3, a unit radiation pressure efficiency, and a standard mass-
luminosity L ∝ M3.8 relation for MS stars). Different linestyles are
for different typical eccentricities of parent bodies. Grains between two
lines of the same style may be in both types of orbits, depending on
where between the periastron and apastron they are ejected. The upper
lines separate bound and unbound orbits for ejection at the periastron
and the lower ones correspond to ejection at the apastron.

size distribution can be approximated by a classical power law
dn/ds ∝ s−3.5 (Fujiwara 1986).

3. Disk model

3.1. Kinetic approach

Knowledge of single-particle dynamics and effects of individual
binary collisions has now to be translated into the properties of
the whole disk, considered as an ensemble of grains.

A straightforward, N-body approach – to follow dynamics
of many individual objects and to perform true collision simu-
lations – remains important for studying “difficult” cases where
many other methods fail, such as the final stages of planet for-
mation (e.g., Ida & Makino 1993; Kokubo & Ida 1998; Charnoz
et al. 2001; Charnoz & Brahic 2001). It can also be useful when
the dynamics are complex, whereas any collisional event is as-
sumed to simply eliminate both colliders (Lecavelier des Etangs
et al. 1996). However, this method cannot treat a large number
of objects sufficient to cover a broad range of particle masses.
Further, it has an intrinsic problem in detecting collisions during
the integration, which restricts its applicability. Hydrodynamics
or SPH are not suitable for collision-dominated systems either.

The kinetic approach of statistical physics is more suitable.
It is based on the continuity-like equation for the distribution
of dust in an appropriate phase space. The idea is to introduce
a multi-dimensional “phase-space distribution” of dust, for in-
stance a distribution of grain sizes, coordinates, and velocites,
and to write down terms that describe the supply, loss and trans-
port of dust grains due to different mechanisms. The resulting
equation can be solved for the phase space distribution as a func-
tion of time, from which usual size and spatial distributions can
easily be calculated. The Kinetic approach was used to model
debris disks, including the interplanetary dust cloud and pre-
sumed Kuiper belt dust disk, by many authors (e.g., Southworth
& Sekanina 1973; Dohnanyi 1973, 1978; Rhee 1976; Leinert
et al. 1983; Gor’kavyi et al. 1997a,b; Ishimoto 1999, 2000).
However, in most of these papers the goal was to solve for either
size or spatial distribution – not both. Also no realistic treatment

of collisions was involved. An exception is our earlier paper
(Krivov et al. 2000) in which, however, another major assump-
tion has been made: small orbital eccentricities of dust grains.
The velocity evolution of the dust material was not included ei-
ther.

Our most recent model (Krivov et al. 2005) is free of
the shortcomings listed above. However, it was developed for
macroscopic objects rather than dust. As a specific application
we addressed the collisional evolution of the classical popula-
tion in the Edgeworth-Kuiper belt. In this paper, the model is
generalized to include radiation pressure, which makes it appli-
cable to dust disks.

3.2. Kinetic theory in orbital elements

Following Krivov et al. (2005), we choose the grain mass m and a
vector of its orbital elements k as phase space variables. This is a
distinct feature of our approach: usually, coordinates and veloc-
ities in a corotating “box” are used instead (e.g. Greenberg et al.
1978; Spaute et al. 1991; Weidenschilling et al. 1997). To ac-
commodate systems where large eccentricites and/or inclination
cause large radial and/or vertical excursions of particles, stan-
dard codes employ multiannulus schemes, whereas our approach
treats such cases in a straightforward way. Roughly speaking, we
translate from the single-particle dynamics to an ensemble of
particles using the idea known for centuries in classical celestial
mechanics: to use slowly changing osculating elements instead
of rapidly changing coordinates and velocities.

The disk is fully characterized by the distribution function
n(m, k), defined in such a way that n(m, k) dm dk is the number
of particles with [m,m + dm], [k, k + dk] present in the disk
at a certain instant of time t. The equation for the distribution
function n has the form (Krivov et al. 2005)

dn
dt

(m, k) =

(
dn
dt

)
gain

(m, k) −
(

dn
dt

)
loss

(m, k) (4)

with

(
dn
dt

)
gain

(m, k) =
∫
mp

∫
mt

∫
kp

∫
kt

f (mp, kp; mt, kt; m, k)

× n(mp, kp) n(mt, kt) vimp(mp, kp; mt, kt)

× δ[r(kp) − r(kt)] σ(mp,mt)

× dmp dmt dkp dkt (5)(
dn
dt

)
loss

(m, k) = n(m, k)
∫
mp

∫
kp

n(mp, kp) vimp(mp, kp, m, k)

× δ[r(kp) − r(k)] σ(mp,m) dmp dkp. (6)

Subscripts p and t mark two colliding particles, a projectile
(the smaller of the two masses) and a target. Other quan-
tities in Eqs. (4)–(6) are: σ the collisional cross section,
σ(mp,mt) = π(sp + st)2, where s is the radius of a particle with
mass m; vimp is the relative velocity of two particles (mp, kp)
and (mt, kt) at collision; f is the fragment-generating function:
f (mp, kp; mt, kt; m, k)dmdk is the number of fragments with
[m,m+dm], [k, k+dk], produced by a collision of particles with
(mp, kp) and (mt, kt). Finally, Dirac’s δ[r(kp)− r(kt)] ensures that
integrands are evaluated at collision.



512 A. V. Krivov et al.: Debris disk model

3.3. Averaging

As discussed in Krivov et al. (2005), k must not necessarily con-
sist of all six Keplerian elements. We can split all six into a vec-
tor of “important” elements p and a vector of “unimportant” ele-
ments q. The letter k in Eq. (4)–(6) can simply be replaced with
the letter p. The equations will still be valid, only the interpre-
tation of quantities slightly changes. The distribution n should
now be understood as a distribution averaged over the remaining
elements q. Other quantities in integrands of (5) and (6), too, are
averages over qs. In this case, we use f instead of f , vimp instead
of vimp, and ∆ instead of δ. They are formally defined as integrals
over qs. For instance, Dirac’s δ is replaced by

∆(pp, pt) ≡
∫ ∫

qp qt

δ[r(pp, qp) − r(pt, qt)]

× ϕ(qp) ϕ(qt) dqpdqt, (7)

where qp and qt are the variables to average over and ϕ(qp) and
ϕ(qt) are their distributions normalized to unity.

An important question is which Keplerian elements of the
six in total should be included in p. The more elements that
are included in p, the more accurate the treatment, but the re-
quired computational resources grow rapidly with the increas-
ing dimension of the phase space. In this paper, we choose an
idealized debris disk that is rotationally-symmetric (uniformly
distributed angular elements) and geometrically thin (small or-
bital inclinations). As a reasonable compromise, we therefore
use p with two elements: semimajor axis a and eccentricity e.
Altogether, we have a three-dimensional (m, a, e) phase space.

In the original model (Krivov et al. 2005), averaging over qs
(inclination i, longitude of ascending node Ω, longitude of peri-
center 
 and an anomaly) was “pre-done” analytically before
we started actual calculations with the model. For instance, we
found an approximate expression for (7).

Here, we use a slightly different, and more accurate, method
of averaging over 
s and anomalies. Consider two intersecting
elliptic orbits (Fig. A.2). In the 2D approximation such two el-
lipses always cross twice or graze once. The relative orientation
of the two orbits is given by the difference of their longitudes
of pericenters: Λ = 
p − 
t. For this reason, we simply add
one more argument, Λ, to the functions f , ∆, and vimp, and per-
form one additional (innermost) integration over Λ, in Eqs. (5)
and (6). Having Λ as an argument of functions is convenient be-
cause Λ immediately determines the true anomaly

ϑt = arcsin
ptep sinΛ√

p2
pe2

t + p2
t e2

p − 2pp ptepet cosΛ

± arccos
pp − pt√

p2
pe2

t + p2
t e2

p − 2pp ptepet cosΛ
, (8)

which, in turn, determines the distance r, through equation of
conic section (14). Then, vimp has a simple interpretation: it is
now the average relative velocity of two particles colliding at
distance r to the star. The Interpretation of functions f and ∆
changes in a similar way.

The final equations have the form

dn
dt

(m, p) =

(
dn
dt

)
gain

(m, p) −
(

dn
dt

)
loss

(m, p) (9)

with(
dn
dt

)
gain

(m, p) =
∫
mp

∫
mt

∫
pp

∫
pt

∫
Λ

f (mp, pp; mt, pt; m, p; Λ)

× n(mp, pp) n(mt, pt)

× vimp(mp, pp; mt, pt; Λ)

×∆(pp, pt; Λ) σ(mp,mt)

× ϕ(Λ) dmp dmt dpp dpt dΛ (10)(
dn
dt

)
loss

(m, p) = n(m, p)
∫
mp

∫
pp

∫
Λ

n(mp, pp)

× vimp(mp, pp; m, p; Λ)

×∆(pp, p; Λ) σ(mp,m)

× ϕ(Λ) dmp dpp dΛ. (11)

Due to the assumed axisymmetry, the distribution over Λ is uni-
form, so that ϕ(Λ) = 1/(2π). In the subsequent subsections, we
discuss in turn the quantities that appear in the integrands in
Eqs. (9)–(11): orbital elements and mass of fragments generated
in a binary collision, needed to specify the function f ; collisional
probabilities that determine ∆; and impact velocities vimp.

3.4. Orbital elements of collisional fragments

Initially, a cloud of fragments, produced by a disruptive colli-
sion, carries the sum of the momenta of both colliders in one
direction. The fragments have zero relative velocities, as we as-
sume maximal collisional damping. The resulting momentum is
that of the center of mass and, in the 2D case, is described by
two conservation laws, one for the radial component and one for
the angular:

msumṙ = mpṙp + mtṙt, (12)

msumrϑ̇ = mprϑ̇p + mtrϑ̇t, (13)

where msum = mp+mt. Krivov et al. (2005) considered the angu-
lar momentum only. The fragments were all placed on the orbit
of the center of mass and remained there due to their being too
large to show significant response to radiation pressure. Now that
we concentrate on micron-sized dust, we extend the fragment-
generating function to consider the distance r = rp = rt, at
which the parent particles p and t collide, and to include radi-
ation pressure described by the β-ratios. Using the equation of
conic section

r =
p

1 + e cosϑ
(14)

with

p = a(1 − e2), (15)

and the derivatives

rϑ̇ =
L

mr
, ṙ =

L
mr

(
1
r
∂r
∂ϑ

)
(16)

with

L = m
√

GM(1 − β)p, (17)

1
r
∂r
∂ϑ
= ±

√
r
p

(
2 − r

a
− p

r

)
(18)
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for the colliders and the resulting fragments, a lengthy, but
straightforward algebra results in

r
a
= 2 − m2

p

m2
sum
· 1 − βp

1 − β
[
2 − r

ap

]
− m2

t

m2
sum
· 1 − βt

1 − β
[
2 − r

at

]

−2
mpmt

m2
sum

√
(1 − βp)(1 − βt)

1 − β

⎡⎢⎢⎢⎢⎢⎣1
r
√

pp pt

±
√(

2 − r
ap
− pp

r

) (
2 − r

at
− pt

r

)⎤⎥⎥⎥⎥⎥⎦, (19)

e = ±
⎡⎢⎢⎢⎢⎢⎣1 − 1

a

⎛⎜⎜⎜⎜⎜⎝ m2
p

m2
sum

1 − βp

1 − β pp +
m2

t

m2
sum

1 − βt

1 − β pt

+2
mpmt

m2
sum

√
(1 − βp)(1 − βt)

1 − β
√

pp pt

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦

1
2

. (20)

Here, the sign of e is equal to that of (1− β), yielding anomalous
hyperbolas with e < 0 for β > 1. Given ap,t, ep,t, βp,t, and mp,t
for the colliders, we are now able to calculate a and e for all
fragments (all β) and positions r. The influence of ϑ (or r) and β
on the fragments’ orbital elements is demonstrated in Fig. 3.

3.5. Masses of collisional fragments

The masses of fragments produced by the collision are supposed
to range from arbitrarily small vapor particles to a certain upper
limit mx, which is determined by the properties of the parent
bodies and their impact velocity (e.g., Paolicchi et al. 1996):

mx =
mt

2

⎡⎢⎢⎢⎢⎢⎣2 mt

mp

Q∗D(mt)

vimp
2

⎤⎥⎥⎥⎥⎥⎦
c

, (21)

with c close to unity. The higher the velocity, the smaller the
fragments. Following Krivov et al. (2005) the critical specific
energy Q∗D is composed of two power laws, one for the strength
regime and one for the gravitational regime:

Q∗D = Assbs
t + Ags

bg

t . (22)

Its minimum and its transition zone are reported to lie at around
100 m, and thus, the typical dust grains and parent bodies would
be sufficiently described by the strength regime alone. The en-
ergy mtQ∗D(mt) + mpQ∗D(mp) is needed to break up both target
and projectile. If the kinetic energy of the inelastic impact is
higher than this critical energy, the collision is treated as frag-
menting. Thus, at a given impact velocity, only projectiles of a
mass mp >∼ mcr are considered, and as usually mcr � mt, this
reduces to

mcr ≈ 2mt

vimp
2

Q∗D(mt). (23)

In agreement with previous works, the mass distribution function
in this range is a power law m−η or s−ν. While experimental re-
sults give a range 1.5 < η < 2.0 (Fujiwara 1986, and references
therein), the “classical” value is 11/6, corresponding to ν = 3.5.

3.6. The fragment-generating function

The fragment-generating function f that enters Eq. (10) de-
scribes the number of fragments with (m, p) that are produced by
a destructive collision of parent bodies with (mp, pp) and (mt, pt).
It is a product of two distributions:

f (mp, pp; mt, pt; m, p; Λ) = g(m; mp, pp; mt, pt; Λ)

× h(m, p; mp, pp; mt, pt; Λ). (24)
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Here, g represents the mass distribution mentioned above,

g = (2 − η) · (mp + mt) ·
(mx

m

)η
· 1

m2
x
· (25)

The second function, h, is the orbital element distribution. This
function evaluates whether or not a fragment with the mass m,
produced in a collision between (mp, pp) and (mt, pt) at the ap-
sidal angle Λ, can have orbital elements p = (a, e). Therefore,
h(m, a, e; mp, pp; mt, pt; Λ) is proportional to

δ[a − a(mp, pp; mt, pt
; m; Λ)] (26)

and

δ[e − e(mp, pp; mt, pt
; m; Λ)], (27)

where a(mp, pp; mt, pt; m; Λ) and e(mp, pp; mt, pt; m; Λ) are

given by Eqs. (19) and (20). The function h is normalized to
unity:∫

h(m, a, e; mp, pp; mt, pt; Λ) da de = 1. (28)

3.7. Collisional probabilities and impact velocities

The “geometric probability” of collision ∆(pp, pt; Λ) (di-
mension: reciprocal of volume) and the impact velocity
vimp(mp, pp; mt, pt; Λ) for two given elliptic orbits with a given
angle Λ between their apsidal lines are

∆ =
1

vpvtPpPt2r sin ε| sin γ| , (29)

vimp =

√
v2p + v

2
t − 2vpvt cosγ. (30)

The variables are: the orbital velocities vp and vt, the orbital pe-
riods Pp and Pt, the angle γ at which the orbits cross, and the
disk’s semi-opening angle ε. The distance of collision r is calcu-
lated with Eqs. (8) and (14).

To account for the third dimension, the impact velocity is
calculated using an average crossing angle:

cos γ =
cos γ√

1 + (B sin ε)2
, (31)

where B is an empirical weighting constant set to 2/3.
For a derivation of these equations see the Appendix.

3.8. Numerical implementation

To solve Eqs. (9)–(11) numerically, we discretize them by intro-
ducing a 3D-grid of m, a, and e and by replacing integrations
with summations, and evolve the system in time with a first-
order Euler routine with an adaptive stepsize control, based on
analysis of increments of the function n.

The collisional probabilities ∆ and velocities vimp are, as far
as possible, computed only once, and then used to calculate the
gain and loss terms for each time step, describing the destruc-
tion of parent bodies and the creation of fragments. Explicitly,
for every bound orbit (at, et) the distance r at which a possible
collision with another orbit (ap, ep) would take place is calcu-
lated at equidistant steps of the true anomaly ϑt. If the projec-
tile p reaches this distance during its revolution around the star,
the following quantities are calculated: the true anomalies ϑp

+

and ϑp
− (Fig. A.2), together with ∆±, the instantaneous orbital

velocities vt and vp for the case where βt = βp = 0, and the ef-
fective crossing angles γ±. These values, which are described
in the Appendix, are stored. Then at each time step for each
crossing combination of orbits and each combination of collid-
ers’ masses the discrete range of anomalies ϑt with stored val-
ues is processed. The orbital velocities are properly scaled by
(1− βt)1/2 and (1− βp)1/2 to determine the relative impact veloc-
ity, and momentum conservation is applied to obtain the orbits
of all possible fragments up to the limiting mass mx which is cal-
culated using vimp. A linear interpolation between the ϑt-steps is
used to distribute the fragments over the (m, a, e)-grid. This se-
lection of fragment orbits and the distribution of mass together
give the implementation of the fragment-generating function f .

The abundance of grains on unbound orbits, β-meteoroids,
is calculated as the product of their production rate and the av-
erage time it takes for them to leave the disk, starting from the
pericenter of their orbits.

4. Application to the Vega disk

4.1. Observations

The so-called Vega phenomenon for main-sequence stars refers
to a mid-infrared excess in the observed spectrum over the purely
stellar emission. It was discovered in 1983 by the IRAS mission,
at first for Vega itself (Aumann et al. 1984), and was soon at-
tributed to a population of cold dust surrounding the star. From
the analysis of the spectral energy distribution in the spectral
range from 12 µm (Aumann et al. 1984; Beichman et al. 1988)
to 1.3 mm (Chini et al. 1990), conclusions about the properties
of the assumed disk were made, for instance the existence of
an inner gap was inferred from the absence of hot grains. The
first spatially resolved submillimeter images of the Vega disk
were obtained with the SCUBA camera on the JCMT on Hawaii
(Holland et al. 1998), followed by other groups (Koerner et al.
2001; Wilner et al. 2002), who concentrated on finding asymme-
tries. Recently, Su et al. (2005) observed the Vega system at 24,
70, and 160 µm with the Spitzer space telescope and found ra-
dial profiles of the Vega disk to be nearly rotationally symmetric
and featureless. The absence of asymmetries and substructure
in the infrared makes the Vega disk an ideal application of our
approach.

4.2. Input data

We set the initial size distribution to the well-known relation
n(s) ∝ s−3.5, starting at a minimum radius of ≈0.1 µm. The total
mass strongly depends on the upper mass cut-off (proportional
to
√

mmax). To conform with previous mass estimates (Holland
et al. 1998; Su et al. 2005), the total observable mass was set to
be made up of grains up to a limiting radius of 1.5 mm. Grains
larger than this – the population of parent bodies – follow the
same power law, but deliver additional mass. The mass range
used was 10−14 g to 3.56 × 1014 g. Thus, setting an observable
mass of ≈0.5 Mlunar (lunar masses) leads to a total initial mass of
close to 300 Mlunar or 3.5 M⊕ (earth masses). This range was cov-
ered by a grid of 70 bins with logarithmic steps with a step factor
of 2.6. The equivalent size grid has steps with factors of 1.37.

To model the distribution of orbital elements, from which
then the spatial distribution of dust material was calculated, we
used a mesh of the semimajor axes from −400 to 400 AU with
steps of 20 AU, and eccentricity bins from −3 to 3 with width
of 0.125, as depicted in Fig. 8. According to Su et al. (2005)
and Dent et al. (2000), for the Vega disk we adopted an initial
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distribution of semimajor axes between 80 AU to 120 AU, cho-
sen in such a way that for zero eccentricities the normal optical
depth τ in this distance range would be constant. The distribution
of semimajor axes outside a = 120 AU was taken to be a power
law, corresponding to the optical depth τ(a) ∝ a−α. Different
values of the index α were tested, see below. No material was
placed initially inside a = 80 AU. The initial distribution of ec-
centricities both in the “ring” between 80 AU and 120 AU and
in the outer disk outside 120 AU was set uniform from zero to
an upper limit of emax = 1/8 or 3/8, depending on the run. The
vertical extension of the disk is defined by a full-opening angle,
which we arbitrarily set to 2ε = 17◦.

The optical and mechanical properties of dust in the disk are
wildly unknown, and we use here two types of grains: “rocky”
and “icy” ones. Assuming a mixture of 70% astronomical sili-
cate of 3.5 g/cm3 (Laor & Draine 1993), 30% amorphous car-
bon of 1.85 g/cm3 (Zubko et al. 1996) and porosity close to
zero, the effective grain bulk density used here for “rocky” grains
is 3.0 g/cm3. The mean radiation pressure efficiency 〈Qpr〉, de-
scribing the momentum transfer from radiation to grain, is set
to unity. The dependence of the critical energy for disruption on
the grain size is given by Eq. (22). The value of Q∗D at a size
of 1 m was set to 106 erg/g, and the slope bs for this strength
regime was set to −0.24, although these values are not well de-
fined by theoretical and laboratory work. To check how strongly
the results depend on the adopted material, one run was done
for “icy” grains of low bulk density (1 g/cm3) and mechanical
strength (Q∗D = 2 × 105 erg/g at a size of 1 m). In Eq. (21), we
used c = 1.24 for rock (Paolicchi et al. 1996) and c = 0.91 for
ice (Arakawa 1999).

4.3. Results

The resulting dust distributions show strong fingerprints of the
radiation pressure. The most noticeable is the peak at the par-
ticle size where β = 1, so that the radiation pressure equals
gravity (cf. Fig. 2). Below this size bound orbits are impossi-
ble (Fig. 4), and the grains are blown away on a timescale of the
order of 102 to 103 years. Due to this lack of possible impactors,
grains slightly above this size limit are overabundant, thereby
reducing the number of grains of the next larger population, and
so on. This dependence produces a well-known wavy pattern in
the size or mass distribution (e.g., Campo Bagatin et al. 1994;
Durda & Dermott 1997; Thébault et al. 2003), whose “wave-
length” depends on the ratio of the average impact energy avail-
able and the impact energy Q∗D needed to disrupt a given target.
The first is controled by impact velocities, which depend on the
disk’s layout. The range of inclinations and especially the range
of eccentricities are important, because they determine the or-
bits’ crossing angles. The critical energy Q∗D, on the other hand,
is determined by material properties.

As is shown in Fig. 5 the disk’s and the dust’s set-up can
have a noticeable influence on the size distribution. Low maxi-
mum eccentricities shorten the pattern’s wavelength due to lower
impact velocities leading to the critical impactor’s size coming
closer to the given target’s. In contrast, the fluffy constitution of
icy grains enlarges the gap between the target mass and the mass
needed to disrupt it at a given impact velocity. Furthermore, it
shifts the lower cut-off of the particle radius to higher values,
according to the ratio of bulk densities, which is here 3:1. We
note that a realistic disk cannot be built up of a perfectly ho-
mogeneous material, which implies a dispersion of densities,
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Fig. 4. Grain size distribution at 100 AU after 10 Myr for a rocky disk
with an initial outer profile ∝r−4 and eccentricities from 0 to 0.375
(solid line). The contributions from the three different types of orbits,
shifted down by one order of magnitude for better visibility, are shown
by long-dashed (ellipses), short-dashed (normal hyperbolas), and dotted
(anomalous hyperbolas) lines.
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Fig. 5. Grain size distribution at 100 AU and 10 Myr (4.5 Myr for “ice”)
for different eccentricity ranges: 0.0 to 0.375 for “rock” and “ice”, and
only 0.0 to 0.125 for “circular” orbits. The dashed lines are rescaled to
coincide with the solid at large radii. The horizontal shift of the maxi-
mum for icy grains is largely due to a different bulk density.

fragmentation energies etc. This could weaken or smear the
waviness of the size distribution.

The time evolution of a particle size distribution of a modeled
Vega disk is shown in Fig. 6. The larger the particles, the longer
the collisional timescales, and the more time it takes for the size
distribution to deviate significantly from the initial power law
and to converge towards a quasi-steady state distribution whose
absolute values are subject to change due to the amount of mate-
rial delivered by collisions of larger bodies. Similarly, the com-
parison of different radial distances at the same time (Fig. 7)
shows slower evolution at regions that are farther out with lower
number densities and decreased impact velocities, where the lat-
ter also result in a reduced wavelength of the pattern.

Because we use the semimajor axis a and the eccentricity e
as variables, all quantities involving the radial distance r are
computed by integrating the distributions (cf. Krivov et al. 2005,
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Fig. 6. Evolution of the size distribution of the disk of Fig. 4 at a distance
of 100 AU.
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Fig. 7. Grain size distribution at distances from 50 AU to 350 AU in
steps of 50 AU after 30 Myr. The initial disk is the same as in Fig. 4.
The inner boundary of semimajor axes was placed at 80 AU. Therefore,
only a small fraction of grains on sufficiently eccentric orbits contribute
to the density at 50 AU.

Eq. (2.18)) over all the orbits crossing or grazing this distance.
The actual distribution of the cross sectional area over the phase
space of a and e is plotted in Fig. 8 for rocky material with an
initial maximum eccentricity of 0.375 and a radial slope α = 2.
Near the inner edge of the disk this surface area is dominated
by eccentricities in the range of the parent population’s, whereas
in the outer region the maximum contribution comes from small
grains on more eccentric orbits, because a higher eccentricity
at the same semimajor axis implies an origin closer to the star,
where the density of parent bodies is higher. Thus, the fragments
created near the disk’s inner edge produce the main portion of
optical depth out to a considerable distance, setting an upper
limit to the radial slope α. Even a ring-like or toroidal parent
population with a sharp outer cut-off would lead to a slope not
steeper than this.

The radial distribution of the optical depth at the end of the
integration is shown in Fig. 9 for four different runs, correspond-
ing to the source ring of constant surface density with and with-
out adjacent outer part with different slopes and assuming differ-
ent eccentricity distributions. As can be seen, the average slopes

Fig. 8. The phase space distribution for the Vega disk of Fig. 4 at a
quasi-steady state after 10 Myr. Each bin in the e-a-grid represents the
surface area (in cm2 per phase space bin-volume) covered by the grains
of all masses belonging to it.
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Fig. 9. Radial profiles of the normal optical depth after 10 Myr: one
for an initially ring-like disk only (solid), one for the ring followed
by the semimajor axis distribution ∝a−4 (dashed), and two for the
ring followed by the ∝a−2 profile (dotted for a maximum eccentricity
emax = 0.375 and dash-dotted for emax = 0.125). The ring boundaries
at 80–120 AU are shown by vertical lines. Note that these values are
the minimum and maximum semimajor axes, so that the ring in space
extends somewhat inside r = 80 AU and outside r = 120 AU.

of all four profiles are comparable inside and outside the ring,
which is located at 80–120 AU. The average outer slope is 1.5,
but the ring-only configuration drops more sharply at the edge of
the ring (1.7) and flattens more at larger distances (1.2), thereby
deviating more strongly from a single power law. This flattening
is caused partly by the fact that the outermost semimajor axis bin
is overpopulated, because it represents orbits from 380 AU to in-
finity. The two power-law profiles make a smoother turn-over.
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Fig. 10. Convergence of the radial profile of the normal optical depth
for a rocky disk with an outer slope of −4.

The convergence of one such radial profile towards a steady
state is illustrated in Fig. 10. This plot demonstrates the tran-
sition from a steep profile r−α with α >∼ 3 (corresponds to
τ(a) ∝ a−4) to a flattened one with α ≈ 1.5. At the beginning
of the simulation, the optical depth grows, reflecting overpro-
duction of the smallest α-meteoroids, i.e. development of the
primary maximum in the wavy size distibution (Fig. 6). Then
the optical depth starts to decrease, due to ongoing collisional
depletion of large bodies and therefore decreased production of
collisional fragments at dust sizes. The figure also shows how
the radial location of the peak optical depth is shifted outward
due to higher rates of mass loss in the inner regions.

The resulting steady-state slopes of surface density that we
find, between 1 and 2, have to be compared to observations.
For large grains in thermal equilibrium the temperature is pro-
portional to r−1/2. For wavelengths much larger than the peak
flux wavelength for grains of 50–100 K (60–30 µm), the emitted
black-body energy is proportional to the temperature itself. In
this case, the total surface brightness I of the thermal emission,
which is a product of the surface density or the optical depth and
the intensity in the observed spectral range, varies as I ∝ r−α−1/2.
At wavelengths close to the maximum of the Planck function, the
maximum intensity goes as the fifth power of the temperature,
giving I ∝ r−α−5/2. Therefore, a radial profile of surface bright-
ness with indexes in a broad range between about−2 and−4 may
be consistent with our model, depending on the temperature dis-
tribution and the wavelength of the observations. Su et al. (2005)
report that the observed surface brightness follows a power law
with index ≈4 for wavelengths of 24 and 70 µm, and ≈3.5 for
160 µm. They suggest that small particles, ≈2 µm, which sweep
out throught the disk with an ideal α = 1 and, according to
their calculations, with I ∝ r−3, are responsible for the observed
flux. However, the latter contradicts our model: the contribution
of grains of 2 µm is by two orders of magnitude less than that
of grains of 10 µm (Fig. 6). Collisions of β-meteoroids with α-
meteoroids, which are neglected here, could slow the escape or
produce more small fragments, thereby prolonging the effective
residence time, but probably not efficiently enough.

So, we expect the main contribution to come from
α-meteoroids, i.e. 10 µm and larger grains. As mentioned above,
this may be compatible with the observations. For a more con-
clusive comparison to the observational data, realistic calcula-
tions of grain temperatures and thermal fluxes need to be applied

Table 1. Masses of the modeled disks producing 0.5Mlunar of dust.

Model Quasi-steady state
Material slope α emax Total mass Mass-loss rate

rock 2 0.125 2.5 M⊕ 0.9 M⊕/Gyr
rock 2 0.375 1.4 M⊕ 1.7 M⊕/Gyr
rock 4 0.375 1.1 M⊕ 2.9 M⊕/Gyr
rock ∞ 0.375 0.7 M⊕ 9.0 M⊕/Gyr
ice 2 0.375 1.6 M⊕ 19.8 M⊕/Gyr

to our results, which is beyond the scope of this paper. There
are many other physical mechanisms that could affect the radial
profiles. For instance, the disk may not be in a steady state. A
single catastrophic event in the past may have occurred, whose
remnants produce the main fraction of the currently visible frag-
mented material. The primordial population of fragments from
this event is expected to spread soon over a circumstellar ring,
which resembles our initial situation. If the time elapsed after the
event were too short to reach the steady state, a steeper profile
would be expected (Fig. 10). The upper limit (from Fig. 10) for
this time is of the order of 106 to 107 yr.

The radial profile may be steepened by a mechanism that
continuously removes grains in orbits with higher eccentricities,
for instance a planet interior or exterior to the belt of parent bod-
ies. As the radial distribution for a dynamically cold disk with
reduced eccentricities shows (Fig. 9), the absence of eccentric
parent bodies, which could be explained by an inner planet, does
not influence the final result. A simple cut-off criterion forbid-
ding planet crossing orbits only for parent bodies would have no
impact on the results, either, but a continuous removal of small
fragments on orbits of high eccentricity and short pericentric dis-
tances, which exist (Fig. 7, 50 AU; Fig. 8), could steepen the
profile. The influence of an outer planet could be similar.

The total masses of the model disks are listed in Table 1 for
different runs. The “rocky” disks are made up of grains from
0.1 µm to 300 m, the “icy” particles span a size range from
0.14 µm to 430 m, so that the same mass range is covered.
The given masses and loss rates for ice are probably less re-
alistic, as the real dust is assumed to be a mixture of silicates
and carbonaceous material. As the mass-per-size-decade distri-
bution (Fig. 11) shows, the derived total mass, which determines
the absolute values of ordinates, is very sensitive to where the
upper cut-off is set, especially when considering the wave pat-
tern. The relative mass loss, Ṁ/M, shows that all disks provide
enough material to sustain the current debris production over at
least 80 Myr up to 2.8 Gyr. A higher mass-loss rate of the icy
disk stems from the fact that ice is easier to destroy than rock
(smaller Q∗D, smaller mcr, and therefore shorter collisional life-
times). The existence of even larger parent bodies would further
prolong the disk’s half-life and increase the total mass, according
to M ∝ m0.5

max, if the mass distribution’s power law still holds for
that regime. To analyse the evolution of total mass with time, we
chose a rocky disk with a ring-only distribution of parent bodies
with a maximum radius of 5 km. Figure 12 depicts the resulting
moderate mass loss over a period of 2 Gyr. From the mass loss
rate of a system in a steady state, Ṁ = −cM M2, where cM is a
constant, we can deduce the dependence of mass on time:

M(t) = M0/[1 + cM M0 · (t − t0)], (32)

where M0 = M(t0) (cf. Dominik & Decin 2003).
While Su et al. (2005) estimate the current mass loss due to

blow-out of small grains as 6 × 1014 g/s or 3200 M⊕/Gyr, we
conclude that mass-loss rates of 1 to 20 M⊕/Gyr (Table 1) are
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Fig. 11. Mass distribution at 100 AU after 10 Myr for the same disk as
in Fig. 4.
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Fig. 12. Decay of the total mass of a rocky, initially ring-only disk (thick
line) and its fits through Eq. (32) with t0 = 200 (dotted), 600 (thin solid),
and 2000 Myr (dashed). The largest bodies in this simulation measured
5 km in radius.

consistent with an observed amount of 0.5 Mlunar of
submillimeter-sized dust. A linear extrapolation by 350 Myr
back in time would lead to initital disk masses several orders of
magnitude below the 330−3300 Jupiter masses given by Su et al.
(2005). Their estimation is based on the short lifetime of un-
bound β-meteoroids, which they assume to be responsible for the
observable flux. The lifetime of small α-meteoroids on bound
orbits is determined by the rate of destructive collisions and is
much longer for optically thin disks. Given the observed amount
of material and the longer lifetime, the necessary production rate
and the total mass decrease to more plausible values.

5. Discussion and conclusions

The subject of this paper is a “typical circumstellar debris disk”.
Instead of including a large array of forces and effects in a so-
phisticated numerical code to get as realistic model as possible,
we have chosen here to concentrate on a few fundamental physi-
cal effects and to develop a kind of a reference model. Our main
interest was to identify several essential, generic properties of
such a debris disk, driven by these effects.

We thus treat the disk as an idealized ensemble of dust par-
ticles, exposed to stellar gravity and direct radiation pressure
and experiencing fragmenting collisions. Two other effects, of-
ten thought to be of primary importance – gas drag and Poynting-
Robertson drag – intentionally, are not included, for the follow-
ing reasons. In debris disks – as opposed to protoplanetary disks
and possibly transitional disks – gas drag does not play a signif-
icant role, simply because there is not enough gas (Thébault &
Augereau 2005). The Poynting-Roberston effect is usually not
important either, since collisional timescales are typically much
shorter than the Poynting-Robertson decay time (Krivov et al.
2000; Wyatt 2005).

We use a method that can be referred to as a “kinetic the-
ory in orbital elements”. Solving a balance equation for mate-
rial gain and loss, we obtain a three-dimensional distribution of
mass, semimajor axes, and eccentricities, averaged over the other
elements. This distribution can easily be transformed to “usual”
distributions, such as size distribution or radial profiles.

We have investigated what kind of size/mass and spatial dis-
tributions of the disk material can be expected from theory, and
how these distributions might depend on the distributions of the
parent bodies, parameters of the central star, and grain proper-
ties. With a number of tests, we have checked that the properties
we found are generic. The model designed here may serve as
a skeleton for the development of more complete models with
a number of additional effects included: physical sources, drag
mechanisms, more accurate impact physics with cratering colli-
sions and restitution, etc.

An application is made to the disk around Vega. This disk is
seen edge-on and appears nearly uniform, representing an ideal
application of our model.

Our main findings are as follows:

1. Size distribution. The radiation pressure strongly influences
the grain size distribution in a debris disk. The cross section
area of the grains, and therefore the disk brightness, are dom-
inated by particles somewhat above the blowout limit, i.e. by
smallest grains that can barely stay in bound orbits against
the radiation pressure. For the Vega disk, this corresponds to
a grain radius of roughly 10 µm. The cross sectional density
of smaller particles, sweeping through the disk in hyperbolic
orbits, is by about two orders of magnitude lower.
Radiation pressure affects the distribution towards larger
sizes as well. Overabundance or underabundance of smaller
projectiles are repeatedly reflected at larger sizes, and thus,
a kind of resonance comes into play, generating a wavy pat-
tern in the size distribution. This might influence modeling
of disk’s spectral properties and disk mass estimates. The
pattern is well understood (Campo Bagatin et al. 1994) as
the result of the lower size cut-off produced by the blowout
due to radiation pressure and was obtained by other models
(Thébault et al. 2003), too. The reported peak at a grain size
twice as large as the smallest bound grains is found as well
as the lack of grains 20 to 100 times as large. However, the
quantitative results differ, because the pattern’s wavelength
and amplitude strongly depend on the grains’ mechanical
properties and average impact velocities.

2. Spatial distribution. The outer slope of the radial profile of
the normal optical depth, ∝r−α, converges towards an upper
limit of α ≈ 1.5. This would correspond to a power law in-
dex of the surface brightness profile between 2 and 4 if the
thermal emission comes mainly from ∼10 µm-sized grains,
as suggested by the size distribution derived here. This may
be consistent with observations of the Vega disk that reveal
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profiles with a surface brightness index of 3 to 4 (Su et al.
2005). Even if it is not, there may be a variety of other phys-
ical mechanisms not included in our model that affect the
spatial distribution. The bright component of the disk may
not have reached a steady state yet. For instance, this can
happen in a disk where “large” collisions between planetes-
imals have recently produced copious amounts of material
that has not had enough time to be fully reprocessed by colli-
sional grinding, so that the populations of solids at dust sizes
are not “heated” by radiation pressure yet. Alternatively, a
planet – either interior or exterior to the location of parent
bodies – could systematically remove grains in eccentric or-
bits, increasing the slope.

3. Timescales and steady state. The size distribution converges
towards a quasi-steady state on timescales depending on the
collisional rates. The latter, in turn, depend on grain sizes and
the distance from the star. For grains up to some hundred µm
at 100 AU, about 1 Myr is needed to reach a steady state.

4. The disk mass and mass loss. The total disk masses needed
for the model disks to produce the observed amount of mi-
cron and submillimeter-sized dust do not exceed several
Earth masses for an upper size limit of 300 m for rocky
bodies. Even if the size distribution holds for the 2 orders
of magnitude larger bodies (30 km), the total mass of 10 to
30 M⊕ will still be reasonable, although higher than the ex-
pected mass of 1 to 2 M⊕ of the Solar system’s Edgeworth-
Kuiper belt. Because the derived lifetimes of the rocky disks
are of the order of 1 Gyr, and the smallest particles that are
still in bound orbits are assumed to dominate the optical
depth, an extrapolation 350 Myr back to the early times of
Vega’s disk would not lead to a disk as massive as the 330
to 3300 Jupiter masses concluded by Su et al. (2005). Thus,
the results given here do not support their idea of a recent
large collisonal event as the dust source, but do not rule it
out either.
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dt

vt

vimp

dp

vp

γ

V

Fig. A.1. Collision of two groups of particles in a small volume of in-
teraction V = dtdph/| sin γ|, where h is the height perpendicular to the
plane of projection, i.e. the disk’s thickness at that point.

Appendix A: Calculation of the collisional
probabilities and impact velocities

Consider first a single particle flying a certain distance through
an ensemble of targets distributed at a given number density ρt
with an interaction cross-section σ. The differential hit probabil-
ity with respect to x, the distance flown, is given by σρt dx. If,
instead of a single projectile, we consider a second ensemble of
a given density ρp, interacting with the target ensemble, we get
the symmetric expression

dW = σρpρtVdx (A.1)

for the number of collisions, with V being the effective volume
of interaction. The actual rate of collisions involving an impact
velocity vimp = dx/dt is then

dW
dt
= σρpρtvimpV. (A.2)

In 2D, a single bound orbit is fully represented by a triplet of
elements: the semimajor axis a, the eccentricity e , and the lon-
gitude of the pericenter (or: angular position of the apsidal line)

 = Ω + ω. Under the axisymmetric condition assumed here,
the distribution over
 is uniform from 0 to 2π. Then, collisions
between two orbits (at, et, 
t) and (ap, ep, 
p) occur in one or
two volumes of (infinitely) small extent (or: points) if the or-
bits are grazing or intersecting. The actual size of the volume
is given by the two “thicknesses” dt and dp of the ellipses, the
crossing angle γ, and the vertical thickness or height h of the
disk at distance r (Fig. A.1). This height depends on the disk’s
geometry and is given by h = 2r sin ε for a standard case with
semi-opening angle ε.

The linear number density ρ̂ of projectiles and targets along
their orbits is determined by their phase space density n together
with the elementary phase space volume dp = da de dm and
the Kepler equation, which gives the individual orbital velocity v
and the orbital period P:

dρ̂ =
n
vP

dp. (A.3)

Thus, the usual number densities at the point of collision and the
interaction volume can be written as

dρt =
nt dpt d
t

vtPtdth
, dρp =

np dpp d
p

vpPpdph
, V =

dtdph

| sin γ| , (A.4)

containing phase space densities n(a, e, 
) = n(a, e)/(2π). The
involved orbital velocities, the orbital periods, and the crossing

(a)

�

� �

Λ

r−

r+

(b)

�

�

r

Λ− Λ+

Fig. A.2. Two elliptic orbits crossing in 2D: (a) two cases for fixed dif-
ference Λ = 
p −
t , (b) two cases for fixed r = rt = rp.

angle γ can be expressed in terms of orbital elements:

vp,t =

√
GM(1 − βp,t)

[
2
r
− 1

ap,t

]
, (A.5)

Pp,t = 2π

√
a3

p,t

GM(1 − βp,t)
, (A.6)

cosγ =
1 +

(
1
r
∂r
∂ϑp

) (
1
r
∂r
∂ϑt

)
√[

1 +
(

1
r
∂r
∂ϑp

)2
] [

1 +
(

1
r
∂r
∂ϑt

)2
] , (A.7)

|sin γ| =
∣∣∣∣ 1

r
∂r
∂ϑp
− 1

r
∂r
∂ϑt

∣∣∣∣√[
1 +

(
1
r
∂r
∂ϑp

)2
] [

1 +
(

1
r
∂r
∂ϑt

)2
] · (A.8)

The resulting variant of Eq. (A.2) contains the phase space den-
sities n instead of number densities ρ:

d
dW
dt
=
σn(ap, ep, 
p) n(at, et, 
t) vimp

vtvpPtPp2r sin ε| sin γ| dpp d
p dpt d
t

=
σn(ap, ep) n(at, et) ϕ(Λ) vimp

vpvtPpPt2r sin ε| sin γ| dpp dpt dΛ, (A.9)

where ϕ(Λ) represents the distribution of pairs of colliders over
Λ, which is uniform, as the system is axisymmetric. As all
variables in Eqs. (A.5)−(A.8) depend on 
p and 
t through
Λ = 
p − 
t only, d
p d
t/(4π2) is transformed to d(
p −

t) d(
p +
t)/(8π2), and integrated once over
p +
t from 0
to 4π, is giving dΛ/(2π) or ϕ(Λ)dΛ.

After separating the number densities, the impact velocity,
the cross section σ, and the differentials, the remaining term
describes the geometric probability of a collision of two such
orbits, but averaged over all variables not involved in the above
calculations: the inclinations and the absolute orientation of (one
of) the orbits. This probability is of unit one per volume and is
very similar to the ∆-integral in Krivov et al. (2005), but with-
out averaging over the relative positions of both orbits – there
is still a dependence on the distance to the star r at which the
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collision occurs:

∆(pp, pt,Λ) =
1

vpvtPpPt2r(Λ) sin ε| sin γ(Λ)| · (A.10)

Except for the special case of grazing orbits with γ = 0, two
orbits in the same plane always cross at two points (Fig. A.2),
or given the target’s true anomaly, there are two ways in which
the projectile can cross the target’s orbit: moving inward or mov-
ing outward. Accordingly, both signs have to be treated for the
derivative ∂r/∂ϑp, giving γ+ and γ−. From the absolute values
of vp, vt and γ we derive the relative velocity

vimp(pp, pt,Λ) =
√
v2p + v

2
t − 2vpvt cos γ(Λ). (A.11)

We now dicsuss 3D corrections necessary to account for (small)
orbital inclinations. As the gain and loss terms (10) and (11)
contain integrals of ∆(pp, pt,Λ) and vimp(pp, pt,Λ) over Λ, we
calculated averages

∆(pp, pt) =
1

2π

2π∫
0

∆(pp, pt; Λ) dΛ, (A.12)

vimp(pp, pt) =

2π∫
0

vimp(pp, pt; Λ) ∆(pp, pt; Λ) dΛ

2π∫
0

∆(pp, pt; Λ) dΛ

(A.13)

and compared the results with those yielded by strict Monte-
Carlo integrations in 3D (cf. Krivov et al. 2005). We found that
Eq. (A.10) does not show any noticeable dependence on the ver-
tical extension of the disk beyond the term sin ε in the denomi-
nator. The impact velocity turned out to be more sensitive to the
possible range of inclinations, and Eq. (A.11) is corrected to

vimp(pp, pt,Λ) =
√
v2p + v

2
t − 2vpvt cos γ (A.14)

with

cos γ =
cos γ√

1 + (B sin ε)2
· (A.15)

The correction constant B was found empirically from the com-
parison with the Monte-Carlo integration: B = 2/3. Figure A.3
shows examples of both quantities, ∆(pp, pt) (Eq. (A.12)) and
vimp(pp, pt) (Eq. (A.13)), with integrands given by Eqs. (A.10)
and (A.14), as well as their comparison with the Monte-Carlo
results.

At this point we are able to evaluate the gain and loss
terms (10) and (11). For example, the gain term can be written as(

dn
dt

)
gain

(m, p) =
∫
· · ·

∫
ap,ep,mp

at ,et,mt

∫
Λ

σ
[
f +vimp

+∆+ + f −vimp
−∆−

]

× npnt ϕ(Λ) dΛ dap,t dep,t dmp,t. (A.16)

To avoid some ambiguities and singularities during the calcula-
tion, it is convenient to switch from integration over Λ to inte-
gration over ϑt. The Jacobian gives

dΛ
dϑt
=

d(ϑt − ϑp)

dϑt
= 1 − ∂ϑp

∂ϑt
= 1 −

∂r
∂ϑt

∂r
∂ϑp

=

1
r
∂r
∂ϑp
− 1

r
∂r
∂ϑt

1
r
∂r
∂ϑp

, (A.17)
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Fig. A.3. The ∆ integral (top) and the impact velocities vimp (bottom) for
different combinations of semimajor axes and eccentricities of two col-
liding particles with (at, et) and (ap, ep). The disk’s full-opening angle
was set to 2ε = 17◦. For each set of orbits the “exact” values (symbols),
obtained with a time-consuming Monte Carlo evaluation, are compared
to the 2D-based approximations, Eqs. (A.10) and (A.14) as solid lines.
The semimajor axes are: at = 1.6, ap = 1.0. The projectile’s eccentrici-
ties are ep = 0.2 and ep = 0.5.

fitting quite well to sin γ (Eq. (A.8)), because their numerators
cancel out. The resulting probability can be written as

∆(pp, pt; ϑt)

=

⎡⎢⎢⎢⎢⎢⎢⎣8π2(apat)3/2 sin ε

√
pt

r(ϑt)

(
2 − r(ϑt)

ap
− pp

r(ϑt)

)⎤⎥⎥⎥⎥⎥⎥⎦
−1

(A.18)

and is no longer symmetric with respect to the target and the
projectile. In the code, the Jacobian was not applied in its dif-
ferential form, but used together with discretized steps of ϑt as
a quotient of differences. Near singularities, that still appear, the
program slightly shifts the eccentricity of both colliders to mimic
the averaging over a whole bin.

One gets the same result as in Eq. (A.18) by starting from
Eq. (7), reformulating the Dirac functions to depend on one col-
lider’s longitude of the pericenter,
t, as well as ϑt and ϑp. The
Jacobian, transforming in 2D from the Cartesian case r = (x, y)
to r = r(ϑt) = r(ϑp) and Λ = ϑ∗t − ϑ∗p, is given by

J−1 =

∣∣∣∣∣∣ ∂(xt − xp, yt − yp)

∂(ϑt − ϑ∗t , ϑp − ϑ∗p)

∣∣∣∣∣∣
=

pt pp |etep sinΛ + et sinϑt − ep sinϑp|
(1 + et cosϑt)2(1 + ep cosϑp)2

· (A.19)

The distributions in Eq. (7) are

ϕ(ϑt) =
(1 − e2

t )3/2

(1 + et cosϑt)2
,

ϕ(ϑp) =
(1 − e2

p)3/2

(1 + ep cosϑp)2
,
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ϕ(
t) =
1

2π
· (A.20)

Finally, the 2D probability

∆2D =

∫

t ,ϑt,ϑp

δ(ϑt − ϑ∗t ) δ(ϑp − ϑ∗p) J

× ϕ(
t) ϕ(ϑt) ϕ(ϑp) d
t dϑt dϑp (A.21)

leads again to Eq. (A.18), after division by 2r sin ε to account
for 3D.


