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Astrophysikalisches Institut und Universitätssternwarte, Friedrich Schiller University Jena, 07745 Jena, Germany; tloehne@astro.uni-jena.de,

krivov@astro.uni-jena.de

and

Jens Rodmann
SCI-SA, Research and Scientific Support Department of ESA, ESTEC, 2200 AG Noordwijk, Netherlands; jrodmann@rssd.esa.int

Received 2007 August 1; accepted 2007 October 22

ABSTRACT

IR surveys indicate that the dust content in debris disks gradually declines with stellar age. We simulated the long-
term collisional depletion of debris disks around solar-type (G2V) stars with our collisional code. The numerical results
were supplemented by, and interpreted through, a new analytic model. General scaling rules for the disk evolution are
suggested. The timescale of the collisional evolution is inversely proportional to the initial disk mass and scales with
radial distance as r4.3 and with eccentricities of planetesimals as e!2.3. Further, we show that at actual ages of debris
disks between 10Myr and 10 Gyr, the decay laws of the dust mass and the total disk mass are different. The reason is
that the collisional lifetime of planetesimals is size dependent. At any moment, there exists a transitional size, which
separates larger objects that still retain the ‘‘primordial’’ size distribution set in the growth phase from smaller objects
whose size distribution is already set by disruptive collisions. The dust mass and its decay rate evolve as that transition
affects objects of ever larger sizes. Under standard assumptions, the dust mass, fractional luminosity, and thermal
fluxes all decrease as t ! with ! ¼!0:3 to!0.4. Specific decay laws of the total disk mass and the dust mass, including
the value of !, largely depend on a few model parameters, such as the critical fragmentation energy as a function of
size, the primordial size distribution of largest planetesimals, and the characteristic eccentricity and inclination of their
orbits. With standard material prescriptions and a distribution of disk masses and extents, a synthetic population of
disks generated with our analytic model agrees quite well with the observed SpitzerMIPS statistics of 24 and 70 "m
fluxes and colors versus age.

Subject headinggs: circumstellar matter — planetary systems: formation

1. INTRODUCTION

Since the IRAS discovery of the excess infrared emission around
Vega by Aumann et al. (1984), subsequent infrared surveys with
ISO, Spitzer, and other instruments have shown theVega phenom-
enon to be common for main-sequence stars. The observed excess
is attributed to second-generation circumstellar dust, produced
in a collisional cascade from planetesimals and comets down to
smallest grains that are blown away by the stellar radiation.While
the bulk of such a debris disk’s mass is hidden in invisible parent
bodies, the observed luminosity is dominated by small particles
at dust sizes. Hence, the studies of dust emission offer a natural
tool to gain insight into the properties of planetesimal populations
as well as planets that may shape them and, ultimately, into the
evolutionary history of circumstellar planetary systems.

In recent years, various photometric surveys of hundreds of
nearby stars have been conducted with the Spitzer Space Tele-
scope. These are the GTO survey of FGK stars (Beichman et al.
2005, 2006b;Bryden et al. 2006), the FEPSLegacy project (Meyer
et al. 2004; Kim et al. 2005), the A star GTOprograms (Rieke et al.
2005; Su et al. 2006), the young cluster programs (Gorlova et al.
2006), and others. These observations were done mostly at 24
and 70 "m with the MIPS photometer, but also between 5 and
40 "m with the IRS spectrometer (Jura et al. 2004; Chen et al.
2006). Based on these studies, about 15% of mature solar-type
(F0YK0) stars have been found to harbor cold debris disks at
70 "m. For cooler stars, the fraction drops to 0%Y4% (Beichman
et al. 2006b). For earlier spectral types, the proportion increases
to about 33% (Su et al. 2006). At 24 "m, the fraction of systems
with detected excess stays similar for A stars but appreciably de-

creases for FGK ones. Similar results in the submillimeter range
are expected to become available soon from a surveywith SCUBA
and SCUBA2 on JCMT (Matthews et al. 2007). Preliminary
SCUBA results for M dwarfs suggest, in particular, that the pro-
portion of debris disks might actually be higher than suggested
by Spitzer (Lestrade et al. 2006).

All authors point out a decay of the observed infrared excesses
with systems’ age. However, the values reported for the slope
of the decay, assuming a power-law dependence t!#, span a
wide range. Greaves & Wyatt (2003) suggest #P0:5, Liu et al.
(2004) give 0:5 < # < 1:0, Spangler et al. (2001) report# # 1:8,
and Greaves (2005) and Moór et al. (2006) derive # # 1:0. Fits
of the upper envelope of the distribution of luminosities over
the age yield # # 1:0 as well (Rieke et al. 2005). Besides, the
dust fractional luminosity exhibits a large dispersion at any given
age.

In an attempt to gain theoretical understanding of the observed
evolution, Dominik &Decin (2003) assumed that equally sized
‘‘comets’’ produce dust through a cascade of subsequent colli-
sions among ever smaller objects. If this dust is removed by the
same mechanism, the steady state amount of dust in such a sys-
tem is proportional to the number of comets. This results in an
M /M0 # $ /t dependence for the amount of dust and for the num-
ber of comets or the total mass of the disk. Under the assumption
of a steady state, this result is valid even for more complex sys-
tems with continuous size distributions from planetesimals to dust.
Tenuous disks, where the lifetime of dust grains is not limited by
collisions but by transport processes like the Poynting-Robertson
drag (Artymowicz 1997; Krivov et al. 2000; Wyatt 2005), follow
M / t!2 rather than M / t!1.
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More recently, Wyatt et al. (2007a) lifted the most severe sim-
plifying assumption of the Dominik-Decin model, that of equal-
sized parent bodies, and included them into the collisional cascade.
A debris disk they consider is no longer a two-component system
‘‘comets+dust.’’ Instead, it is a population of solids with a con-
tinuous size distribution, from planetesimals down to dust. A key
parameter of the description by Dominik & Decin (2003) is the
collisional lifetime of comets, $ . Wyatt et al. (2007a) replaced it
with the lifetime of the largest planetesimals and worked out the
dependencies on this parameter in great detail. Since the colli-
sional timescale is inversely proportional to the amount of material,
$ / 1/M0, the asymptotic disk mass becomes independent of its
initial mass. Only dynamical quantities, i.e., the disk’s radial po-
sition and extent, the orbiting objects’ eccentricities and inclina-
tions, andmaterial properties, i.e., the critical specific energy and
the disruption threshold, as well as the type of the central star,
determine the very long term evolution.

Still, there are two important simplifications made in the model
byWyatt et al. (2007a): (1) the disk is assumed to be in collisional
equilibrium at all sizes, from dust up to the largest planetesimals;
and (2) the minimum specific energy needed to disrupt colliding
objects is independent of their size. As a consequence of assump-
tions 1 and 2, the size distribution of solids is a single power law.
To check how reasonable these assumptions are, realistic simula-
tions of the diskswith collisional codes are necessary (e.g., Thébault
et al. 2003; Krivov et al. 2005, 2006; Thébault &Augereau 2007).

The aim of this paper is twofold. First, we follow the evolution
of debris disks with our elaborate numerical code (Krivov et al.
2005, 2006) to check the existing analytic models and the as-
sumptions 1 and 2 they are based on. Second, in order to make
these numerical results easier to use, we develop a new analytic
model for the evolution of disk mass and dust mass that relaxes
both assumptions 1 and 2 above.

In x 2 we summarize the basic ideas and assumptions and de-
scribe our numerical model and the runs of the collisional code.
In x 3 the numerical results are presented and dependencies of the
collisional timescale on the disk mass, distance to the star, and
mean eccentricity of parent bodies are derived. In x 4 the analytic
model for the evolution of disk mass and dust mass is developed.
In x 5we analyze the evolution of dust luminosities. In x 6we use
the analytic model to synthesize representative populations of
debris disks and compare them with statistics of debris disks de-
rived from the Spitzer surveys. A summary is given and conclu-
sions are drawn in x 7.

2. NUMERICAL MODEL AND DESCRIPTION OF RUNS

2.1. Basic Approach

For all numerical runs in this paper, we use a C++-based colli-
sional code (ACE, Analysis of Collisional Evolution). The code
numerically solves the Boltzmann-Smoluchowski kinetic equation
to evolve a disk of solids in a broad range of sizes (from sub-
micrometers to about a hundred kilometers), orbiting a primary
in nearly Keplerian orbits (gravity+direct radiation pressure+drag
forces) and experiencing disruptive collisions. Collisions are sim-
ulated with available material- and size-dependent scaling laws
for fragmentation and dispersal in both strength and gravity re-
gime. The current version implements a three-dimensional kinetic
model, with masses, semimajor axes, and eccentricities as phase-
space variables. This approach automatically enables a study of
the simultaneous evolution of mass, spatial, and velocity distri-
bution of particles. The code is fast enough to easily follow the
evolution of a debris disk over gigayear timescales. A detailed
description of our approach, its numerical implementation, and

astrophysical applications can be found in our previous papers
(Krivov et al. 2000, 2005, 2006).

2.2. Disruption Threshold and Critical Specific Energy

An object is said to be disrupted in a collision if the largest
fragment is at most half as massive as the original object. If the
impactor’s relative velocity is so high that the ratio of impact
energy and target mass exceeds the target’s critical specific en-
ergy, Q$

D, the target (and the impactor) is disrupted. For small
objects, this binding energy is dominated bymaterial strength, and
for larger objects, self-gravity takes over. Both regimes are usually
described by a sum of two power laws (Krivov et al. 2005, x 5.1,
and references therein)

Q$
D ¼ As

s

1 m

! "3bs
þ Ag

s

1 km

! "3bg
; ð1Þ

where ‘‘s’’ and ‘‘g’’ stand for strength and gravity, respectively.
The reported values of the coefficientsAs andAgvary bymore than
1 order of magnitude, and we took As ¼ Ag ¼ 5 ; 106 ergs g!1, in
agreement with the reference case for basalt given by Benz &
Asphaug (1999). The exponents are 3bs ¼ !0:3 and 3bg ¼ 1:5
(corresponding to !0.1 and 0.5 in the mass scaling). With these
parameters, the two power-law components contribute equally at
s # 316 m, and the lowest binding energy, the minimum Q$

D, is
reached at s # 129 m. The influence of the choice of parameters
on the resulting evolution is discussed in x 4.
For computational reasons, we refrained from including a treat-

ment of cratering collisions in the runs. Note that these were not
taken into account in previous studies of the long-term evolution
of debris disks (e.g., Dominik & Decin 2003; Wyatt et al. 2007a)
either. Thébault et al. (2003) and Thébault & Augereau (2007),
who focused on shorter time spans, did include this nondisrup-
tive type of collisions that lead to the continuous erosion of a
target by small impacting projectiles. They found the effect to be
dominant for particles in between 100 "m and 1 cm for the case
of the inner % Pictoris disk, while big, kilometer-sized objects in
the gravity regime are mainly lost to disruptive collisions (see
Table 4 in Thébault et al. 2003). However, including cratering
can lower the lifetime of large objects, especially when relative
velocities are low and disruptive collisions are rare. Another ca-
veat is that cratering collisions alter the shape of the wavy size
distribution at the lower end (Thébault & Augereau 2007), which
affects the observable thermal fluxes.

2.3. Collisional Outcomes

The distribution of sizes and the velocities of fragments in an
individual (catastrophic) collision have been subject to studies for
decades. Laboratory work was done on high-velocity impacts on
scales of millimeters and centimeters (e.g., Fujiwara et al. 1977;
Fujiwara 1986; Davis & Ryan 1990). Statistics on the mass dis-
tributions of observed asteroidal families and geometrical consid-
erations (Paolicchi et al. 1996; Tanga et al. 1999; Tedesco et al.
2005), as well as gravitohydrodynamic simulations of fragmen-
tation and reaccumulation (Michel et al. 2002), cover the range
of larger, kilometer-sized bodies. On small scales, the resulting
size distributions show a strong dependence on impact velocity
and seem to indicate a turn in the power law at fragment sizes
around #1 mm (or #1% of the size of the used targets). The
slope for objects above that size is steeper than the one for smaller
objects (Davis & Ryan 1990). However, Thébault et al. (2003)
found that the ratio of these two slopes and the size at which the
slope changes influence simulation results only slightly. On kilo-
meter and larger scales, the fragmentation is influenced by
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gravitational reaccumulation of relatively small fragments onto
bigger ones. Hence, bigger fragments ((100 km) will be over-
abundant, and conversely, smaller fragments ((1 km)will be un-
derabundant, compared to the underlying distribution without
gravity. The slopes of the size distributionn(s) / s!p of kilometer-
sized objects are poorly known. Awide range from p ¼ 3:5 up to
p ¼ 9:0 has been reported. These deviations in the kilometer re-
gime are most probably the severest caveat of the power-law ap-
proximation because they are independent of the actual material
and caused only by gravity. Nevertheless, we assume that frag-
ments follow a single power-law distribution nfrag(s) / s!3:5, ex-
pecting the influence on the final collisional steady state to be
only moderate.

2.4. Commons for All Runs

All disk models presented here are set up around a star of solar
mass and luminosity. Parameters of the central star affect the disk
evolution in various ways. They determine the size limit for grain
blowout by radiation pressure and orbital velocities at a given dis-
tance, thereby altering impact velocities and rates. For late-type
stars, strong stellar windsmay affect the dust dynamics (Augereau
& Beust 2006; Strubbe & Chiang 2006). On the observational
side, dust temperatures and brightnesses are influenced. Here we
focus on the scalings for a fixed spectral type (G2 V), and not on
scalings between different types.

The disks themselves all share the same material properties
and shapes. We adopt the material, described by a bulk density
& ¼ 2:5 g cm!3, the radiation pressure efficiency of astronomical
silicate (Laor &Draine 1993), and a critical fragmentation energy
as specified in x 2.2. We switched off the Poynting-Robertson
effect, which is unimportant for debris disks under study, as
well as stellar wind drag, which plays only a minor role around
G-type stars. The fragments produced in an individual collision
are distributed according to a single power law, dN / s!3:5 ds /
m!11=6 dm. A biggest fragment size is assumed to scale with spe-
cific impact energy to the power of 1.24 (for details see Krivov
et al. 2006). The initial mass distribution is given by dN / m!q,
with q ¼ 1:87, a value that accounts for the modification of the
classical Dohnanyi (1969)q ¼ 1:833 through the size dependence
of material strength (see, e.g., Durda & Dermott 1997). The par-
ticle masses range from 4:2 ; 10!15 g, corresponding to a radius
of 74 nm, to 4:2 ; 1021 g, corresponding to 74 km. The stepping
between the 60 mass bins is logarithmic with a factor of #4 be-
tween neighboring bins. The initial radial profile of the particle
density was given by a slope of the normal optical depth of!1.0.
The initial total mass of each disk was set to 1M) (Earth mass).

2.5. Specifics of Individual Runs

Wehavemade four ‘‘nominal’’ runs, each of which corresponds
to a certain radial part of the disk between 7.5 and 120 AU from
the star (Table 1). In these runs we assumed initial eccentricities
of planetesimals to be uniformly distributed between emin ¼ 0:0
and emax ¼ 0:3, spanning three bins centered at 0.05, 0.15, and
0.25. In addition, three runs with altered maximum eccentricity
of 0.1, 0.2, and 0.4 were made for the 15Y30 AU ring. In all the
runs, we assumed that orbital inclinations are distributed between
Imin ¼ emin /2 and Imax ¼ emax /2 in accordance with the energy
equipartition relation I ¼ e/2.

3. NUMERICAL RESULTS AND SCALING LAWS

3.1. Evolution of Disks of Different Masses

A debris disk is said to be in a quasiYsteady state or quasi-
equilibrium if the amounts of particles with different sizes on

different orbits, while changing with time (therefore ‘‘quasi’’),
stay constant relative to each other. For brevity, we often omit
‘‘quasi’’ and use simply ‘‘steady state’’ or ‘‘equilibrium.’’ To ex-
press the condition of a quasiYsteady state formally, we can intro-
duce a phase space, in which a dynamical state of each particle is
characterized by a vector p. That vector may be composed, for
instance, of coordinates and velocity components. Alternatively,
p may represent the set of orbital elements of the object. Let
n( p; s; t) be the number of objects with radii in ½s; sþ ds+ at
phase-space ‘‘positions’’ ½ p; pþ dp+ that the disk contains at the
time instant t. The assumption of a quasiYsteady state can now
be expressed as

n p; s; tð Þ ¼ ñ p; sð Þ f tð Þ: ð2Þ

The total disk mass,

Mdisk tð Þ ¼
Z Z

n p; s; tð Þ dp ds; ð3Þ

can be rewritten as

Mdisk(t)¼ f (t)

Z Z
ñ( p; s) dp ds ð4Þ

or, setting f (0) ¼ 1,

Mdisk(t)¼ f (t)M0; ð5Þ

whereM0 is the initial disk mass. As long as objects are both cre-
ated and lost in two-particle collisions, their gain and loss rates
are given by

ṅ p; s; tð Þ ¼
Z Z Z Z

½G p; s; p1; s1; p2; s2ð Þ

! L p1; s1; p2; s2ð Þ' p! p1ð Þ' s! s1ð Þ+
; ñ p1; s1ð Þ f tð Þñ p2; s2ð Þ f tð Þ dp1 ds1 dp2 ds2; ð6Þ

where the function G( p; s; p1; s1; p2; s2) describes the gain in
population p, s due to collisions between p1, s1 and p2, s2 and the
function L( p1; s1; p2; s2) accounts for the loss in population p1,
s1 in collisions with p2, s2. The disk mass changes at a rate

Ṁdisk tð Þ ¼
Z Z

ṅ p; s; tð Þ dp ds ð7Þ

TABLE 1

Description of Numerical Runs

Run

Distance

(AU) emax

Nominal Runs

ii-0.3........................... 7.5Y15 0.3

i-0.3 ............................ 15Y30 0.3

o-0.3 ........................... 30Y60 0.3

oo-0.3 ......................... 60Y120 0.3

Additional Runs

i-0.1 ............................ 15Y30 0.1

i-0.2 ............................ 15Y30 0.2

i-0.4 ............................ 15Y30 0.4
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or

Ṁdisk tð Þ ¼ ḟ tð Þ
Z Z

ñ p; sð Þ dp ds: ð8Þ

From equations (6) and (7), we find that Ṁdisk(t)/ f 2(t), while
equation (8) suggests Ṁdisk(t)/ ḟ (t). Hence, ḟ (t)/ f 2(t). Integra-
tion yields

f ¼ 1

1þ t=$
: ð9Þ

Using equation (5), we obtain

Mdisk(t)¼
M0

1þ t=$
; ð10Þ

Ṁdisk(t) ¼!CM 2
disk; ð11Þ

where 1/C ¼ M0$ , i.e., the product of the initial mass and a
characteristic time. This relation is invariant under the transfor-
mation (t; Mdisk) ! (tx; Mdisk /x), even ifC is not constant. There-
fore, the mass scale of a system under collisional evolution is
inversely proportional to its timescale. For example, doubling the
initial total mass halves the collisional lifetime of the system. All
curves in the Mdisk(t) plots can be shifted along lines of equal
tMdisk.

Dominik & Decin (2003) used this approach and equated the
characteristic time $ with the collisional lifetime of their ‘‘comets.’’
At the initial phase tT$ , equation (10) gives

Mdisk tð Þ # M0 1! t=$ð Þ: ð12Þ

If the system is old enough so that t3 $ , the total mass will be
just proportional to t!1. Particles whose lifetimes are indepen-
dent of the total mass are exempt from the asymptotic one-over-t
behavior. Examples would be the %-meteoroids that are blown
out and small particles in disks tenuous enough for the Poynting-

Robertson effect to be more efficient than collisions. The total
mass of such particles is /t!2 (Dominik & Decin 2003).
As we have shown, for the systems that undergo a steady state

collisional evolution, the factor C in equation (11) (or $) should
be constant. To check this, we evaluated C ¼!Ṁdisk /M

2
disk for

every two subsequent time steps of the numerical runs. The re-
sults are given in Figure 1.
Instead of being constant at later times, C decreases, roughly

following a power law C / t!2=3 to t!4/5. The explanation is
simple: the systems did not reach an equilibrium where t3 $ or
at least t # $ during their lifetime. The evolution of the total mass
in Figure 2 demonstrates that as well.

3.2. Dependence on Distance from the Star

Rings of identical mass but at different distances have different
collisional timescales. The comparison in Figure 1 shows that dou-
bling the distance requires a 20-fold increase in diskmass to have
the same timescale. This corresponds to a power-law dependence

C / r!4:3: ð13Þ

In a thorough analytic approach based on a Dohnanyi-type colli-
sional cascade, Wyatt et al. (2007a) came up with C / r!13=3,
which is in good agreement with our numerical result. This index
is made up of three contributions. First, the density in the rings
drops with r!3 as their circumference, height, and width increase
linearly. Second, the relative velocities have an r!1=2 dependence.
Third, these impact velocities affect the minimum required mass
for a projectile to be disruptive and thereby the total number of
such projectiles. That gives another r1!q, where q is the slope in
the appropriate mass distribution, e.g., q ¼ 11/6 for the classical
Dohnanyi case. See x 4.3 for details.

3.3. Dependence on Eccentricities of Parent Bodies

The intrinsic collisional probability of planetesimals is nearly
independent of their eccentricities, as long as they are not too high
(see, e.g., Krivov et al. 2006). Nevertheless, eccentricities deter-
mine impact velocities and, through that, the minimum size of a
disruptive projectile. Therefore, higher planetesimal eccentricities
imply a larger rate of catastrophic collisions and thus a faster col-
lisional evolution. To quantify the dependence, we havemade runs
with maximum eccentricities of 0.1, 0.2, 0.3, and 0.4 (Table 1)

Fig. 1.—CoefficientC from eq. (11) as a function of time for four nominal runs.
The total disk mass and time in the runs are scaled according to Mdisk / t!1 to
compensate for the difference in dynamical timescale. Note that the near constancy
of C at the beginning of the evolution is an artifact of the double-logarithmic
plotting. The double-linear inset shows that the decrease of C is fastest at earlier
times.

Fig. 2.—Evolution of the totalmass in the four nominal runs.Again, the plateau
at the beginning of the evolution is an artifact of the logarithmic plotting of time.
In fact, the mass decay is strongest at the very beginning (see inset and eqs. [10]
and [12]).
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and determined the values of C. The results suggest a power law
C / e9=4max as shown in Figure 3.

This result comes as a surprise. Wyatt et al. (2007a) derive
C / e5=3. The same scaling is inherited by our analytic model
(see eq. [36]). Since this discrepancy can be due either to an in-
completeness of the analytic approach or to a nonlinear relation
between the maximum and the effective eccentricity, we tried to
rule out the latter case by performing additional runs with e con-
fined to narrow bins of width 0.1, centered at 0.05, 0.15, 0.25,
and 0.35. These runs can be well described by the same power law,
C / e9=4 (Fig. 3). Therefore, the analytic model fails to reproduce
this particular dependence. Nevertheless, it correctly describes
many others, as the next sections show.

4. ANALYTIC MODEL FOR EVOLUTION
OF DISK MASS AND DUST MASS

4.1. Size and Mass Distributions

In what follows, we analyze size ormass distributions of objects.
Different authors use distributions of different physical quantities
(number, cross section, mass) with different arguments (particle
size or mass) and of different type (differential, cumulative, per

size decade, etc.). A standard choice is to use a differential size
distribution, n(s), that gives the number of particles per unit size
interval,

n sð Þ ,
Z

n p; sð Þ dp; ð14Þ

or a differential mass distribution, n(m), that gives the number of
particles per unit mass interval. Instead of n, it is often convenient
to use the mass-per-size-decade distribution,

dMdisk

d log10s
¼ ln (10)sm(s)n(s): ð15Þ

In contrast to n(s), this quantity tells us directly in which size
range objects contribute themost to themass of the system. There-
fore, we use it when plotting size or mass distributions.

In the case of a power-law size distribution, n(s) ds / s2!3q ds
is the number of objects with sizes ½s; sþ ds+ and n(m) dm /
m!q dm is the number of objects with masses ½m; mþ dm+. The
mass per size decade is /s6!3q / m2!q. When q < 2, the total
mass is determined by large bodies, whereas the cross section is
dominated by small particles as long as q > 5/3.

4.2. Three-Slope Distribution

The combination of material strength at smaller sizes and self-
gravity at larger ones, with a turnover at around 100 m, causes
the size distribution in a collisionally evolving system to strongly
deviate from a single-slope power law, especially for object sizes
of around 1 km. This is illustrated by Figure 4, which shows how
a disk evolves from the first-guess power law to a more realistic
size distribution. The speed of this evolution is determined by the
collisional timescales of populations of different-sized particles
in the disk. Populations of smaller particles with sufficiently short
lifetimes consistmostly of fragments of disruption of larger bodies.
They will have reached collisional equilibrium with each other
soon, according to their production rate by populations with lon-
ger lifetimes. The latter populations of bigger particles will still
be on their way to a steady state. As time goes by, more and more
long-lived populations will undergo the transition from primor-
dial to reprocessed material.

As this transitionalmassmoves toward larger objectswith time,
the smaller particles follow to a new ‘‘intermediate steady state.’’
The bottom panel of Figure 4 shows the development of the char-
acteristic wavy shape in the size distribution (e.g., Campo Bagatin
et al. 1994; Thébault et al. 2003; Krivov et al. 2006) at the small-
size end near the blowout limit due to radiation pressure. Once
established, this shape remains constant. Only the absolute level
changes because this distribution at smaller sizes acts as the trail of
the distribution at larger sizes. In the top panel of Figure 4, the
number of smaller particles is constant for some time and then
goes down, as soon as the distribution in the gravity regime starts
to deviate from its primordial one.

These arguments suggest that an overall size distribution
n(s) can be approximated by a combination of three power laws
(Fig. 5). For particles large enough to be only barely affected by
collisions at time t, we assume n to follow s2!3qp. Here qp is the
‘‘primordial’’ slope determined by the processes in which these
planetesimals have formed. Small particles that are in quasiYsteady
state are separated from bigger primordial objects by a transition
zone that we characterize by a time-dependent size st(t). To
distinguish between the strength and gravity regimes, we intro-
duce two more power laws and assume the mass distribution to

Fig. 3.—Influence of the average eccentricity of planetesimals on the timescale
of the disk’s collisional evolution. Top: Evolution of the parameter C from eq. (11)
for four different runs ( i-0.1, : : : , i-0.4). Bottom: Four initial C-values vs. aver-
age eccentricity e¼ (emax þ emin)/2 ( plus signs) together with theC / e9=4 fit for
those runs (solid line) and the same for runs with a narrower range of eccentric-
ities, as described in x 3.3 (crosses).
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follow n / s2!3qg for gravity-dominated quasiYsteady state and
n / s2!3qs for strength-dominated quasiYsteady state. The two re-
gimes are separated by anobject size sb,whichwe call the ‘‘breaking
radius.’’ Thus, the waviness is neglected, but the effect of a size-
dependent Q$

D is kept.
The resulting size distribution is given by

n sð Þ ¼ nmax
smax

s

! "3qp!2
; st - s < smax; ð16Þ

n sð Þ ¼ nmax
smax

st

# $3qp!2
st
s

! "3qg!2

; sb - s < st; ð17Þ

n sð Þ ¼ nmax
smax

st

# $3qp!2
st
sb

# $3qg!2
sb
s

! "3qs!2

;

smin < s < sb; ð18Þ

where nmax , n(smax), with smax being the size of the largest plan-
etesimals. From this distribution, two important quantities can be
derived. One is the total disk mass,

Mdisk ¼
Z smax

smin

n(s)
4

3
(&s3 ds; ð19Þ

and the other is dust mass (which determines the infrared lumi-
nosity and therefore provides a link to observations),

Mdust ¼
Z sd

smin

n(s)
4

3
(&s3 ds; ð20Þ

where smin - sd < sb.

4.3. Collisional Lifetimes of Planetesimals

As seen from equations (16)Y(20), the evolution of Mdisk and
Mdust is controlled by nmax(t) and st(t).
We start with nmax and assume, according to equations (2)

and (9),

nmax(t)¼
nmax(0)

1þ t=$max
; ð21Þ

where $max is the collisional lifetime of these largest bodies. Equa-
tion (21) closely reproduces the disk evolution as soon as the
whole system has reached the quasiYsteady state at all sizes or, in
other words, as soon as st(t) has reached smax.
The second quantity that we need, st(t), could easily be ob-

tained by inverting the function $(s), the collisional lifetime of
planetesimals of a given size s. To obtain $(s), we begin with the
lifetime of the largest objects in a disk. Assuming that q > 5/3,
Wyatt et al. (2007a, their eq. [12]) approximated it as

$max ¼
4(

)tot

smax

smin

# $3qp!5
r 5=2 dr

GM$ð Þ1=2
I

f e; Ið ÞG q; sð Þ ; ð22Þ

where e and I are the effective orbital eccentricities and inclina-
tions, )tot is the initial cross-sectional area of the disk material, G
is the gravitational constant, r is the radial distance of the ring of
parent bodies, and dr is its width. The slope q in their single

Fig. 5.—Schematic plot of the three regimes in the mass distribution and its
time evolution. The mass st divides second-generation material in collisional equi-
librium (s < st) from primordial material (s > st), while sb divides the material
strength regime (s < sb) from the gravity regime (s > sb).

Fig. 4.—Results of the ii-0.3 run. Top: Time evolution of mass in individual
mass bins, from the largest bodies of 74 km in radius to the smallest, 74 nm in
radius. The mass ratio between adjacent bins is 4. Each solid line corresponds to
one individual bin and gives the mass contained in that bin (see the right axis) as
a function of time. The left axis can be used to find the line that corresponds to
a given object size. The thick dashed line corresponds to#1 mm radius, i.e., to
the largest solids still treated as dust. The thick dotted line, which goes roughly
through the turning points of the lines, is the transition size st (t); see eq. (37).
Bottom: Size /mass distribution at four specific instants of time shown in the top
panel with vertical lines: initially, after 5 ; 105 yr when st has reached sb, and after
5 ; 107 and 5 ; 109 yr when significant dust depletion has already occurred.
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power-law approach corresponds to the primordial slope qp in our
nomenclature. The functions f and G are given by

f e; Ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

4
e2 þ I 2

r
; ð23Þ

G q; sð Þ ¼ Xc sð Þ5!3q! smax

s

! "5!3q
& '

þ 2
q! 5=3

q! 4=3
Xc sð Þ4!3q! smax

s

! "4!3q
& '

þ q! 5=3

q! 1
Xc sð Þ3!3q! smax

s

! "3!3q
& '

; ð24Þ

with

Xc(s) ¼
2Q$

D(s)rf (e; I )
!2

GM$

& '1=3
: ð25Þ

While f (e; I ) describes the dependence of the impact velocities
on eccentricities and inclinations, the functions G and Xc char-
acterize the disruption of planetesimals by smaller projectiles.
Namely, Xc(s) is the minimum size ratio between the smallest dis-
ruptive projectile and the target, and G(q; s) is the number of
disruptive projectiles.

We need the lifetime of objects of an arbitrary size, $(s < smax).
To derive it, we can simply substitute smax by s in equation (22),
obtaining

$ sð Þ ¼ 4(

)tot

s

smin

# $3qp!5
r 5=2 dr

GM$ð Þ1=2
I

fG qp; s
( ) : ð26Þ

In order to replace the dependence on the initial cross-sectional
area of objects, )tot, with their initial total mass, M0, we need to
derive both quantities from the initial size distribution in equa-
tion (16). The area is given by

)tot ¼ nmax(0)
(s3max

3qp ! 5

smax

smin

# $3qp!5

!1

" #
: ð27Þ

Since it is dominated by smin for qp > 5/3, we obtain

)tot ¼ nmax(0)
(s3max

3qp ! 5

smax

smin

# $3qp!5

: ð28Þ

The initial total disk mass is

M0 ¼ nmax 0ð Þ 4(&s4max

3 6! 3qp
( ) 1! smin

smax

# $6!3qp
" #

: ð29Þ

For qp < 2, it is dominated by smax. However, since a primordial
slope qp . 2 is not unrealistic (see x 4.8), we refrain from using a
further approximation. Then, the area and the mass are related
through

)tot ¼ M0

3 2! qp
( )

4 qp ! 5=3
( ) s!1

max

smax

smin

# $3qp!5

; 1! smin

smax

# $6!3qp
" #!1

: ð30Þ

Inserting equation (30) into equation (26) results in

$ sð Þ ¼ 16(&

3M0

s

smax

# $3qp!5
smaxr

5=2 dr

GM$ð Þ1=2

;
qp ! 5=3

2! qp
1! smin

smax

# $6!3qp
" #

I

f e; Ið ÞG qp; s
( ) ; ð31Þ

which gives the collisional lifetime of an object with radius s.
Note that

1

2! qp
1! smin

smax

# $6!3qp
" #

!!3 ln
smax

smin
ð32Þ

for qp ! 2.
If the mean impact velocities in the system are high enough to

allow planetesimals of radius s to get disrupted in a collision, i.e.,
Xc(s)Tsmax /s, G(qp; s) reduces to

G qp; s
( )

# qp ! 5=3

qp ! 1
Xc sð Þ3!3qp ; ð33Þ

and $(s) to

$ sð Þ ¼ 16(&

3M0

s

smax

# $3qp!5
Ir 2 dr

f e; Ið Þ2qp!1

r

GM$

# $qp!1=2

;
qp ! 1

2! qp
1! smin

smax

# $6!3qp
" #

2Q$
D

( )qp!1
: ð34Þ

Now, we take into account the dependence of Q$
D on the object

size s, as was done by O’Brien & Greenberg (2003). If we are
only interested in the gravity regime, s > sb, equation (1) is sim-
plified to

Q$
D(s) # Q$

D;b

s

sb

# $3bg

; ð35Þ

whereQ$
D;b is the critical specific energy at the breaking radius, i.e.,

around the minimum of Q$
D(s). Assuming, further, that I / e, we

can write down the dependencies of the collisional lifetime,

$ sð Þ / )!1
tot s

3qp!5þ3(qp!1)bgr 3=2þqp dr e!5=3: ð36Þ

O’Brien & Greenberg (2003) yield the same size dependence on
s in their equation (11).

To find st(t), the object size below which a steady state is
reached, we assume that the populationsmove from their primor-
dial state to the quasiYsteady state instantaneouslywhen the system
age reaches their initial mean collisional lifetime, $(st) ¼ t. Inver-
ting that, the resultingmass of objects in transition can be retrieved
as a function of system age. Keeping the assumptionXcTsmax /s,
the relation is

st tð Þ / t1=½3qp!5þ3(qp!1)bg+ ð37Þ

for t > $(sb) , $b. This transitional size is also plotted in Figure 4.
Pan & Sari (2005) followed a similar approach in their study

of the Kuiper Belt size distribution. Describing the propagation
of the shock wave through the target, they introduce a parameter
% that varies between 3/2 (if all energy of a projectile goes to the
shock wave) and 3 (if all its momentum does). Their % equals
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1/bg in our nomenclature, and bg ¼ 0:5 leads to % ¼ 2. In addi-
tion, we have to replace their slope q0 with our 3qp ! 2. Then,
given their equations (6), (7), andN>s / s3!3qp , we yield the same
exponent as in our equation (37). Note thatwhat Pan&Sari (2005)
call ‘‘breaking radius’’ is our ‘‘transition radius’’ st, and their
‘‘radius of equilibrium’’ is our ‘‘breaking radius’’ sb.

4.4. Evolution of Disk Mass

Now, we derive the full expression for the time-dependent
total disk mass. Using the size distribution given by equation
(18), nmax from equation (21), and expressing nmax(0) through
M0 with the aid of equation (29), we can perform the integration
in equation (19). Then, the resulting time-dependent disk mass
is

Mdisk tð Þ ¼ M0

1þ t=$max
1! smin

smax

# $6!3qp
" #!1

;

(
1! st tð Þ

sb

& '6!3qp sb
smax

# $6!3qp

1! 2! qp

2! qg

# $

þ st tð Þ
sb

& '3qg!3qp sb
smax

# $6!3qp 2! qp

2! qs
! 2! qp

2! qg

# $

! st tð Þ
sb

& '3qg!3qp sb
smax

# $3qs!3qp smin

smax

# $6!3qs 2! qp

2! qs

# $)
ð38Þ

for $b < t < $max. Tomake equation (38) valid for earlier phases,
i.e., for t < $b, sb should be replaced by st(t). The sizes involved
are the maximum object size smax, the transition size between the
primordial and reprocessed material st, and the breaking radius
between the gravity and strength regime sb. The lower limit in the
size distribution, smin, is crucial for the dust emission and is usu-
ally taken to be the radiation pressure blowout limit. As long as
qp < 2, it is fairly unimportant for themass budget. However, we
are interested in qp . 2 as well. Therefore, we can safely set
smin ¼ 0 only in the last line of equation (38), where it enters
through smin /smax to the power of 6! 3qs, with qs # 11/6 < 2.

The relative importance of the terms in equation (38) is illus-
trated in Figure 6. A combination of the classic Dominik-Decin
behavior in the first line of equation (38) together with the second
line is a reasonably accurate approximation to Mdisk(t) for most
of the time. With the aid of equation (37), equation (38) trans-
forms to

Mdisk(t) #
M0

1þ t=$max
1! smin

smax

# $6!3qp
" #!1

;

"
1! sb

smax

# $6!3qp t

$b

# $(2!qp)=½qp!5=3þ(qp!1)bg+

; 1! 2! qp
2! qg

# $#
ð39Þ

for $b < t < $max. At tT$max, and assuming qp ¼ 1:87, a fur-
ther approximation is

Mdisk tð Þ # M0 1! const t 0:2
( )

: ð40Þ

The evolution of the disk mass, both from the numerical runs
and from the analytic solution given by equation (38), is plotted
in Figure 7, showing a good agreement between analytics and
numerics. A deviation is only seen around t ¼ $b where the

transition from primordial to reprocessed state sets in for gravity-
dominated objects. The reason is that, to ease the analytic treat-
ment, we neglect the smooth natural transition from material
strength to self-gravity given by equation (1) and assume a sharp
break between the two power laws instead.

4.5. Evolution of Disk Mass at Latest Stages

As soon as the age of the system has reached the collisional life-
time of the largest bodies, i.e., at t > $max, the solids of all sizes in
the disk reach quasiYsteady state, and the change in total mass
will be dominated by 1/t. At this latest phase, the projectiles that
can destroy objects of size smax no longer follow a size distribu-
tion with the primordial slope, 2! 3qp. Instead, they have the
slope of a collisional cascade under gravity regime, 2! 3qg. The
slightly longer collisional lifetime can neither be expressed through
equation (22), which uses the initial cross section )tot, nor through
equation (31), which contains the initial disk massM0 and slope
qp. The correct way to evaluate $max is to use the initial number
density of biggest objects, nmax(0), and the slope qg. Expressing
)tot in equation (22) through nmax with the help of equation (28)
and replacing then qp with qg, we obtain

$max ¼
12qg ! 20

nmax 0ð Þs3max

r 5=2 dr

GM$ð Þ1=2
I

f e; Ið ÞG qg; smax

( ) : ð41Þ

Expressing now nmax(0) through M0 by virtue of equation (29)
yields

$max ¼
16(&

3M0
smax

r 5=2 dr

GM$ð Þ1=2
qg ! 5=3

2! qp

; 1! smin

smax

# $6!3qp
" #!1

I

f e; Ið ÞG qg; smax

( ) ; ð42Þ

where both slopes, qp and qg, appear (cf. eqs. [22] and [31]).

4.6. Evolution of Mass in Dynamically ‘‘Cold’’ Disks

All the treatment above applies to planetesimal belts where
relative velocities are high enough for the biggest objects to be
destroyed by mutual collisions. This might not be the case in dy-
namically ‘‘cold’’ disks with low eccentricities and inclinations
and/or very far from the star.

Fig. 6.—Contributions of different terms in eq. (38) (dotted and dashed
lines) and their total (solid line).
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Consider again the lifetime of objects $(s). As s increases,Xc(s)
(eq. [25]) increases too and at a certain point reaches smax /s. At
this point, G (eq. [24]) becomes zero and $(s) (eq. [31]) goes to
infinity. This means that, for a given impact velocity, objects above
a certain critical size cannot be disrupted anymore. In systems with
low relative velocities, that critical size may happen to be smaller
than smax. This will affect the mass evolution. Specifically, when
st reaches that critical size, the overall mass decay ceases.

To illustrate such effects, Figure 8 shows the influence of the
effective e and I on the evolution of the total mass of a disk of
initially 1M) at an effective distance of 10 AU, calculated with
our analytic model. For colder disks, the curves start to flatten.
This happens because the largest planetesimals (that dominate
the total mass) stay intact, which slows down the mass loss.

4.7. Evolution of Dust Mass

The dustmass can be evaluated in a similar way as the diskmass.
We use now equations (18), (20), (21), (29), and (37). Neglecting
the minimum mass smin only when it enters the formula through
smin /smax, we obtain

Mdust tð Þ ¼
M0

1þ t=$max

t

$b

# $(qg!qp)=½qp!5=3þ(qp!1)bg+ 2! qp
2! qs

;
sb
smax

# $2!qp sD
sb

# $2!qs

! smin

sb

# $2!qs
" #!1

ð43Þ

for $b < t < $max. Before that, i.e., at t < $b, we have qs and bs
instead of qg and bg, respectively. If the assumed primordial slope,
qp, equals the steady state slope in the strength regime, qs, the dust
mass stays constant, which is the case for the first part of the
numerical integration. However, as soon as the transitional zone
reaches objects large enough to be influenced by self-gravity, equa-
tion (43) starts to work. It shows that the evolution of dust mass
depends most strongly on the difference between qp and qg. The
dust mass decay, obtained from both the numerical runs and the
analytic solution given by equation (43), is shown in Figure 9.
For t > $b , we roughly have Mdust / t ! with ! # !0:3.

We finally note that equation (43) is valid as long as the col-
lisional lifetime of the largest planetesimals is longer than the age
of the system. When t > $max, t /$b in that equation must be re-
placed by $max /$b .

4.8. The Model Parameters

Our analytic model contains several parameters that either dif-
fer from similar parameters in the numerical model (such as e) or
are absent there (such as qs and qg). To use the analytic model, we
have to specify them.We now describe how this can be done, ex-
plaining, in particular, the choice of parameters used to plot ana-
lytic curves in Figures 6Y9.

Two important free parameters of the analytic model are qs and
qg. We use the work of O’Brien & Greenberg (2003), who found
the slope of the size distribution in a system in a collisional steady
state. With the dependence of the critical specific energy on the
object size given in equation (1), they give a power-law index

q ¼ 11=6þ b

1þ b
ð44Þ

in their equation (24).Withb ¼ bs ¼ !0:1 for the strength regime,
we have q ¼ qs ¼ 1:877. Similarly, with b ¼ bg ¼ 0:5 for the
gravity regime, equation (44) can be used to derive qg # 5/3. It is
these values that we used in equation (38) to produce Figures
6Y8 and in equation (43) to plot Figure 9.

In contrast to qs and qg, the primordial slope, qp, is a free pa-
rameter not only in the analytic model but also in the numerical

Fig. 7.—Evolution of total masses with (scaled) time, obtained in four numeri-
cal runs and with the analytic model.

Fig. 8.—Influence of the effective eccentricity assumed in the analytic model
for a disk of 1 M) at r ¼ 10 AU with a radial extent dr ¼ 7:5 AU. The I ¼ e/2
relation between eccentricity and inclination is assumed.

Fig. 9.—Similar to Fig. 7, but for dust masses, i.e., masses in particles with
radii below 1 mm.
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one. As stated in x 2.4, in all ‘‘nominal’’ runs we assumed
qp ¼ 1:87, which corresponds to pp ¼ 3qp ! 2 ¼ 3:61 in the
size scaling. In principle, qp describes the mass distribution at the
onset of the collisional grinding of the disk and, therefore, repre-
sents a link to the planetesimal formation process. The outcome
of the agglomeration phase is the input to the phase of disruptive
collisions. The Kuiper Belt is the only source for observational
constraints to this parameter so far, and recent surveys suggest a
value of pp ¼ 4:0/ 0:5 (e.g., Trujillo et al. 2001; Bernstein et al.
2004) or qp ¼ 2:00/ 0:17. Simulations by Kenyon & Bromley
(2004) yieldpp ¼ 4:0Y4:5 or qp ¼ 2:00Y2:17.According to equa-
tion (43), wherewe haveMdust / t !, and togetherwith qg # 1:67,
thiswould change the dustmass evolution fromMdust / t!0:32 for
qp ¼ 1:87 to Mdust / t!0:40 for qp ¼ 2:00. Figure 10 shows the
rather moderate dependence of the index ! on the two mass
distribution slopes, qg and qp.

While the dust size limit, sD, has little influence on the mass
budget, the breaking size, sb, the maximum size, smax, and the ra-
tio of the two are relevant to the evolution as they define the
lifetime of the largest bodies $max relative to $b.What is more, the
ratio sb /smax determines the rate of themass decay in equation (39).
From x 2.2we know the location of the breaking radius to be 316m
for thematerial properties assumed, and the upper size limit of all
the runs was set to smax ¼ 74 km.

Another parameter in the analytic model is the collisional life-
time of objects of breaking radius, $b ¼ $(mb). Equation (31) ex-
presses it through other parameters critical for the efficiency of
collisions: the radial distance to the star r, the disk radial exten-
sion dr, and the effective eccentricity e and inclination I.We choose
to fix both the effective distance and the disk extension to be
r ¼ 4/3 dr ¼ 10AUwhen reproducing analytically the results of
the ii-0.3 run, 20 AU for i-0.3, 40 AU for o-0.3, and 80 AU for
oo-0.3. Further, the inclination can be coupled to eccentricity by
assuming the equilibrium condition I ¼ e/2. Thus, only e re-
mains as a free parameter. The best fit to, e.g., the ii-0.3 run is
achieved if we assume e # 0:075 in the analytic model, which is
approximately one-quarter of emax ¼ 0:3. With these choices, we
find $(sb) # 4 ; 105 yr.

Alternatively, $b can be directly retrieved from the break in
the evolution of the dust mass (see Fig. 9). This method gives

$(sb) # 5 ; 105 yr, which is approximately 4/3 times the value
calculated with equation (31). This discrepancy is probably a re-
sult of the particle-in-a-box assumptions made by Wyatt et al.
(2007a) in derivation of equation (22). We prefer this empirical
scaling and thus applied the factor of 4/3 to all analytically esti-
mated timescales in this paper.

5. EVOLUTION OF DISK LUMINOSITY

5.1. Fractional Luminosity for a Given Age

Following Wyatt et al. (2007a), we define the fractional lumi-
nosity of dust as

fd ,
)tot

4(r 2
; ð45Þ

which assumes that dust grains are blackbodies, absorbing and
reemitting all the radiation they intercept.Wyatt et al. (2007a, their
eq. [20]) found that there is a maximum possible fractional lumi-
nosity fmax for a given age, whose value is independent of the
initial disk mass but depends on other model parameters such as
the distance r of the disk center from the star, its width dr, size of
the largest planetesimals Dc, critical fragmentation energy Q$

D ,
orbital eccentricity of planetesimals e (with their inclination being
I ¼ e/2), and the stellar mass M$ and luminosity L$.
We now wish to explore fd(t) and check whether it has an up-

per limit in the framework of our analytic model. To this end, we
used equation (45) and calculated )tot with the aid of our equa-
tion (43) for the dust mass. We assumed a solar-type star with
M$ ¼ L$ ¼ 1 and probed disks withMdisk ¼ 1, 3, 10, and 30M);
r ¼ 3, 10, 30, and 100 AU; dr/r ¼ 1

8,
1
4 ,

1
2, and 1; and e ¼ 0:05,

0.10, 0.15, and 0.20. The results are presented in Figure 11 (thick
lines). As a standard case,we adoptedMdisk ¼ 10 M), r ¼ 30AU,
dr/r ¼ 1

2 , and e ¼ 0:10. It is shown with a thick solid line in each
of the panels.
In the same Figure 11, we have overplotted with thin lines the

dust luminosity fd computed with equations (14), (19), and (20)
ofWyatt et al. (2007a) for comparison. In that calculation, we as-
sumed Q$

D ¼ 300 J kg!1 (constant in their model), Dc ¼ 60 km,
and the same values of those parameters that are common in their
and our model (M$, L$, r, dr /r, and e).
Analysis of Figure 11 allows us to make a number of conclu-

sions. First, as expected, our model yields more gently sloping
curves than that by Wyatt et al. (2007a). As discussed above, the
1/t law will be asymptotically reached in our model, too, but this
does rarely happen at ages t < 10 Gyr. Only the first signs of the
curves’ steepening appear at gigayear ages, and that only for the
cases when the collisional evolution is faster (higher masses,
closer in or more confined dust rings, higher eccentricities). As a
consequence of the slope difference between the twomodels, our
model places more stringent upper limits of fd at earlier ages, and
conversely, it allows the gigayear old systems to have a somewhat
higher fd than the model by Wyatt et al. (2007a) does.
Next, the dependence of fmax on the initial disk mass, which

cancels out in their model, is retained in our nominal runs (top
left panel ). In fact, the maximum possible fd is then determined
by the maximum initial disk mass that still appears physically
plausible in the framework of theories of planetesimal accretion
and planet formation.
Another point to mention is that, whereas the dependence on

the disk width (bottom right panel ) and planetesimal eccentrici-
ties is relatively weak and monotonic, the dependence on the disk
location (top right panel ) is rather strong andmore intricate. That
the dependence is strong is the consequence of equation (13),
which predicts the timescales to very sensitively depend on the

Fig. 10.—Index ! of the power-law evolution of the dust mass,MD / t ! . The
horizontal axis gives the dependence on the slope of the primordial mass distribu-
tion, qp, for values from qg ¼ 1:57 (bottom) to qg ¼ 1:77 (top) for the slope in the
gravity regime. The thick line is for qg ¼ 1:67 # 5/3. Vertical lines indicate the
mean value and error estimates for qp from Trujillo et al. (2001).
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distance from the star, and of equation (45), which contains a
‘‘dilution factor’’ r 2. At the beginning of the evolution, the in-
nermost ring is always the brightest because the dilution factor
r 2 in equation (45) is the smallest. At the end of the evolution,
the opposite is true: the outermost ring will become the brightest
because its collisional evolution is the slowest and it retains more
mass than inner disks. Therefore, all four curves intersect each
other at a certain point; the 30 and 100 AU curves do that after
10 Gyr, i.e., outside the right edge of the plot. After that, all the
curves go parallel to each other in the ‘‘Dominik-Decin regime,’’
following a 1/t law. Note that inner rings reach the 1/t regime
more quickly: already at 10AU it is established in around 100Myr
for an initial mass of 10 M).

Although the existence of a ‘‘maximum fractional luminosity
for a given age,’’ as suggested byWyatt et al. (2007a), no longer
holds in our model as a robust mathematical statement, in prac-
tice ourmodel still suggests that fd(t) cannot exceed a certain limit,
unless the model parameters take extreme values, incompatible
with our understanding of the planetesimal disks. For instance,
we do expect fd < 10!4 at t ¼ 10 Gyr, provided that the initial
disk did not contain more than 30M) of solids and that the mean
orbital eccentricity of planetesimals is not lower than 0.1 (corre-
sponding to the mean inclination larger than 30). Therefore, plots
such as Figure 11 can be used to check whether or not fd observed
for a certain system with a known age is compatible with a

‘‘smooth,’’ unperturbed collisional evolutionary scenario. In case
it is not, it will be an indication that other mechanisms (delayed
stirring, recent giant breakups, noncollisional dust production, etc.)
should be thought of to explain the observations.

5.2. 24 and 70 "m Fluxes from Partial Rings

In order to produce directly observable quantities from the de-
rived dustmasses, we now concentrate on dust luminosities at par-
ticular infrared wavelengths. We calculated the dust temperature
and the thermal emission integrated over the whole disk with a
more accurate, yet sufficiently simple, model, assuming that the
absorption/emission efficiency is constant up to wavelengths of
2( times the size of the particles, s, and proportional to s!1

beyond that (Backman & Paresce 1993). Then we computed the
spectral flux densities of dust emission Fd and of the stellar ra-
diation F$ at a certain wavelength, as well as their ratio Fd /F$. As
the size distribution in the dust regime quickly reaches its steady
state, the luminosity Fd is directly proportional to the dust mass.
Therefore, the same initial constancy and subsequent t ! decay
with ! ¼ !0:3 to !0.4 apply.

Figure 12 shows the evolution of the excess emission at the
SpitzerMIPS wavelengths 24 and 70 "m, obtained from the four
nominal runs. Since all disks have the same initial total mass
(1M)), the disks closer to the star are brighter and start to decay
earlier. The difference between the excesses at 24 and 70 "m, a

Fig. 11.—Fractional luminosity of dust around a solar-like star as a function of age. Thick lines: our analytic model; thin lines: fd of Wyatt et al. (2007a). Different
panels demonstrate dependence on different parameters: Mdisk (top left ), r (top right ), dr /r (bottom left ), and e (bottom right). A standard case with M$ ¼ L$ ¼ 1,
Mdisk ¼ 10 M), r ¼ 30 AU, dr /r ¼ 1

2 , and e ¼ 0:10 is shown with solid lines (common in all panels).
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measure of the disks’ effective temperature, is varying with radial
distance as well. Thus, the convergence of just the 70 "m fluxes
at later times is only coincidental. It is a result of the radial de-
pendence of temperature and the collisional timescale.

5.3. Fluxes from Extended Disks

Since resolved debris disks suggest that the parent body reservoir
in the disks is usually confined to a toroidal region (a planetes-
imal belt) or is made up of several such tori, it seems appropriate
to simply combine individual ringswithout taking into account pos-
sible interactions between particles that belong to different rings.
Thus, we summed up the fluxes from the four main runs. Dif-
ferent radial distributions in the whole disk were simulated by
‘‘weighting’’ the individual rings:

Fd ¼
X4

j¼1

Fd; j rj=r0
( )*

; ð46Þ

where rj are the central distances of the rings and values of 0, 1,
2, and 3 were used for the slope *. As the reference runs were
made for rings of 1M) each with volumes proportional to r 3, the
corresponding volume density in the extended disk is propor-
tional to r*!3, while the pole-on surface density and normal geo-
metrical optical depth follow /r *!2. The distance r0 normalizes
the total mass to 1M). Therefore, by changing the slope, the mass
is only shifted between inner and outer regions.

In Figure 13 the effect on the 24 and 70 "m fluxes is shown. If
the weights are assigned in favor of more distant debris rings, the
resulting fluxes are naturally reduced. The same is true for the
speed of the decay because the timescales get longer. The evo-
lution of the fluxes at the two SpitzerMIPS wavelengths 24 and
70 "m differs significantly. At 24 "m the decay starts earlier and
reaches its maximum speed earlier because shorter lived inner re-
gions make the main contribution.
The models contain a sufficient number of parameters, varia-

tion of which would affect the curves in Figure 13 in different
ways. As stated earlier, varying the total mass changes the time-
scale according to $ / M!1

disk. Hence, the curves can be shifted
along the lines of equal tMdisk, i.e., along the top leftYbottom right
diagonal. As seen fromFigure 13, variation of the radial distribu-
tion changes both the absolute level and the tilt of the curves.
Besides, it affects the disk colors, i.e., the separation of the 24 and
70 "m curves in Figure 13. In addition, the dynamical timescales,
and therefore the tilt of the curves, are affected by eccentricities
and inclinations of the parent bodies that may reflect the presence
of planetary perturbers in the disk (see x 3.3). Altogether, these
degrees of freedom would allow one to reproduce a broad set of
observational data.

6. COMPARISON WITH OBSERVATIONAL DATA

6.1. Spitzer Data

The advent of the Spitzer Space Telescope has brought a tre-
mendous increase in the number of main-sequence stars surveyed
for the existence of cold dust emission (for a recent compilation
see Werner et al. 2006).
The wealth of data from these debris disk surveys allows us

to confront our models with actual observations. To this end,
we searched the literature for published flux ratios at 24 and/or
70 "m (two of the three MIPS bands) around G-type main-
sequence stars. To qualify as a main-sequence star, we applied
a lower limit to the stellar age of 10 Myr. Sources with stellar age
estimates younger than this are likely stars with gas-dominated,
protoplanetary disks; these were not taken into account.

Fig. 12.—Flux ratio vs. time for 24 "m (top) and 70 "m (bottom).

Fig. 13.—Time evolution of the infrared excess of extended disks with differ-
ent initial radial distributions ( labels indicate the radial slope of the surface mass
density; the thicker the lines, the flatter the profiles) at 24 "m (dashed lines) and
70 "m (solid lines). The total mass is 1 M) in each case.
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The bulk of the data taken in the framework of the Legacy
program ‘‘Formation andEvolution of Planetary Systems’’ (FEPS;
Meyer et al. 2004, 2006) are public since 2006 December. The
FEPS archive contains images, spectra, photometry tables, and
Kurucz photosphere models and is available online.1 Age esti-
mates have been published for 46 FEPSG stars (Kim et al. 2005;
Stauffer et al. 2005; Silverstone et al. 2006).

The large Guaranteed Time Observer (GTO) survey of FGK
stars contains another 64 stars, where ages are available (Beichman
et al. 2005, 2006b; Bryden et al. 2006). Data for 10 more G stars
are listed in Chen et al. (2005a, 2005b). In total, 120 G-type
main-sequence stars with flux ratios at 24 and/or 70"mhave been
compiled from the literature for comparison with model flux
ratios.

6.2. Population Synthesis

Based on the analytic prescription presented in x 4 and moti-
vated by theWyatt et al. (2007b) work, we now build a synthetic
set of debris disks around G2 stars. We generate a set of ringlike
disks of width dr located at distances r2 ½rmin; rmax+, with masses
Mdisk2 ½Mmin; Mmax+ and ages between 10 Myr and 10 Gyr. The
probability to have a disk of initial mass M0 at radius r was
assumed to follow M!1

0 r!0:8, where M!1
0 corresponds to a log-

normal distribution of initial diskmasses and the r!0:8 dependence
was proposed by Wyatt et al. (2007b). As described in x 5.2, the
temperatures and the resulting thermal fluxes are calculated using
the modified blackbody formulae by Backman & Paresce (1993)
assuming the emitting grains to have s ¼ 1 "m, in agreement with
the size distribution shown in Figure 4. The other parameters are
taken to be qp ¼ 2:00, qg ¼ 1:67, qs ¼ 1:877, dr/r ¼ 0:5, 2I ¼
e ¼ 0:15,Q$

D(1 m)¼Q$
D(1 km)¼ 5 ; 106 ergs g!1,bD ¼!0:12,

bg ¼ 0:47, roughly corresponding to basalt in Benz & Asphaug
(1999).

Due to the small observational sample, our aimwas not to per-
form a multiparameter fit to the observations, but rather to cover
the range of observed flux densities, which is defined by the limits
of the distributions, not by their slopes.

Varying disk locations and masses easily reproduces the ob-
served distribution of fluxes at 24 and 70 "m (Fig. 14). The syn-
thetic population shown corresponds to rmin # 20 AU, rmax #
120 AU and Mmin < 0:01 M), Mmax # 30 M). Here the radial
range is needed to cover the range of colors, i.e., the ratios be-
tween the excess emissions at the two wavelengths. The mass
range is needed to cover the observed range of excess, especially
for younger disks at 70 "m.

Analyses of Spitzer detections might indicate a statistically sig-
nificant increase of both 24 and 70 "m fluxes at ages between a
few tens and a few hundreds of megayears (e.g., J. M. Carpenter
et al. 2008, in preparation), which can only be marginally seen in
our sample (Fig. 14). It is hypothesized that this feature is caused
either by an increased dust production due to delayed stirring by
growing planets or by events similar to the late heavy bombard-
ment in the solar system. Such effect could only be studiedwith an
improved version of our analyticmodel orwith the numerical one.

The distribution of disk colors is more difficult to reproduce.
Figure 15 shows a significant abundance offainter butwarmer disks
in an area that is not covered by the synthetic population. One ex-
planation would be that the upper mass limit is a function of ra-
dial distance, and that the innermost disks tend to be less massive
and less luminous, from the very beginning. In addition, the bottom
panel of Figure 15 shows a trend toward higher effective temper-
atures for higher ages, which is difficult to understand. Indeed, as

long as faint close-in disks are observed around older stars, one
would expect ever brighter disks, and therefore more numerous
detections of disks at the same distances around younger stars.
Furthermore, the trend in question contradicts the results byNajita
&Williams (2005), who found no significant correlation between
the disk radii and ages.Most likely, the discrepancy is only caused
by uncertainties of themeasured excesses at 24 "m.Bryden et al.
(2006) report that the average photometric accuracy in that filter
band is only as good as 1)24 ¼ 6% due to stellar photosphere
fitting errors and flat-field uncertainties. Therefore, excesses below
those 6% of the photospheric emission cannot be considered as
significant. For 70 "m, Bryden et al. (2006) state 1)70 # 15%.
Both limits are shown in the top panel of Figure 15.

In Figures 14 and 15, there is one particular system directly
labeled. That system, HD 72905, was observed to show signifi-
cant excess emission not only at 24 and 70"mbut also in the spec-
tral ranges 8Y13"mand 30Y34"mof the Spitzer IRS instrument
(Beichman et al. 2006a). The presence of two dusty regions was
suggested: one exozodiacal at 0.03Y0.43 AU and one around
14 AU. From the excess at 8Y13 "m, Wyatt et al. (2007a) in-
ferred the dust population in HD 72905 to be transient because the
observed fractional luminosity is above the maximum expected
for a system of 300Y400Myr. As long as only 24 and 70 "m are
considered, the HD 72905 dust does not seem particularly hot or
bright, although it is among the hotter disks.

Fig. 14.—Flux ratios vs. time for 24 "m (top) and 70 "m (bottom). The syn-
thesized population (small filled circles) is compared to the observed one (large
filled circles). Individually labeled is the possibly transient systemHD72905; see text.

1 See http: //data.spitzer.caltech.edu/popular / feps /20061223_enhanced_v1.
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At this point, it is interesting to compare our results to those of
Wyatt et al. (2007b). Both analytic approaches aim at explaining
and reproducing the observations. Our model is different from
theirs in that we take into account the size dependence of the crit-
ical specific energy, as well as the transition from a primordial
size distribution of planetesimals to the one set up by a colli-
sional cascade. The amount of dust in their model is determined,
from the very beginning, by the rather long collisional timescales
of objects of tens of kilometers, so that the collisional evolution
is much slower. This can be seen from the equations: ‘‘1+’’ in the
denominator of equation (10) causes the mass to stay almost at
the initial level for a long time, before the system reaches the t!1

decay. In our model, although the mass decay is asymptotically
slower (t! with ! # !0:3 to!0.4), it sets up very quickly, namely,
on collisional timescales of objects withminimum binding energy
(sb ( 100 m). Therefore, we would expect the model by Wyatt
et al. (2007b) to show significantly larger excesses at ages con-

sidered, if all other parameters were comparable. This, however,
is not the case. Wyatt et al. (2007b) assumed a much weaker ma-
terial in their collisional prescription. TheirQ$

D ¼ 300 J kg!1 at an
object radius of 30 km (Dc ¼ 60 km) is by more than 2 orders of
magnitude below the values we use in equation (1). As $ / Q

qp!1
D

in equation (34), their collisional timescales are shorter and their
evolution faster, too. Besides the material strength, the difference
in the assumed effective eccentricities—e ¼ 0:05 in their model
against emax /2 ¼ 0:15 in ours—causes another factor of roughly
10 in the collisional timescales, according to x 3.3. All the differ-
ences listed happen to nearly compensate each other. As a net
result, the excesses predicted by our model and that of Wyatt
et al. (2007b) are comparable with each other (see also Fig. 11),
being in reasonable agreement with the observed ones.

7. SUMMARY AND CONCLUSIONS

We investigated the long-term evolution of debris disks around
solar-type (G2 V) stars. First, we performed numerical simula-
tionswith our collisional code. Second, the numerical results were
supplemented by, and interpreted through, a new analytic model.
The latter is similar to, and builds on, the model developed earlier
by Wyatt et al. (2007a) but extends it in several important direc-
tions. It naturally includes the transition from the primordial size
distribution of leftover planetesimals, set up at their agglomer-
ation phase, to the size distribution established by the collisional
cascade. Further, it lifts the assumption that the critical specific en-
ergy needed for disruption is constant across the full range of sizes,
from dust to the largest planetesimals. With these improvements,
a good agreement between the numerics and analytics is achieved.
We draw the following conclusions:

1. The timescale of the collisional evolution is inversely propor-
tional to the initial disk mass. For example, halving the total mass
doubles all collisional timescales. This rule is valid for systems
where collisions are the only lossmechanism of particles and only
as long as%-meteoroids are unimportant for the collisional budget.
2. Numerics and analytics consistently yield a $ / r 4:3 depen-

dence of the timescale of the collisional evolution on the radial
distance.
3. Numerical simulations show that the collisional timescale var-

ieswith the average eccentricity of dust parent bodies as$ / e!2:3.
The analytic approach suggests a somewhat weaker dependence,
$ / e!5=3.
4. An evolving three-slope size distribution is proposed to ap-

proximate the numerical results. The biggest objects are still dis-
tributed primordially, with a slope qp. The objects below a certain
transitional size are already reprocessed by collisions and thus
have a quasiYsteady state size distribution, determined by their
self-gravity (for intermediate-sized objects, slope qg) or by ma-
terial strength (for smallest objects, slope qs). That transitional size
corresponds to the largest objects for which the collisional life-
time is still shorter than the age of the system. The transitional
size increases with time, meaning that ever larger planetesimals
get involved in the collisional cascade.
5. At actual ages of debris disks,(10Myr to(10Gyr, the de-

cay of the dustmass and that of the total diskmass follow different
laws. The reason is that, in all conceivable debris disks, the largest
planetesimals have longer collisional lifetimes than the system’s
age and therefore did not have enough time to reach collisional
equilibrium. If the systemwere let to evolve for a sufficiently long
time, both dust mass and disk mass would start to follow t!1.
However, this requires time spans of much longer than 10 Gyr.
6. The loss rate of the dust mass and the decay rate of frac-

tional luminosity primarily depend on the difference between the

Fig. 15.—Relation between fluxes at 24 and 70 "m vs. time. The synthesized
population (small filled circles) is compared to the observed one (large filled circles
and triangles). The average photospheric uncertainty for both filters is marked by
dashed lines in the top panel. Excesses below those limits in either of the two fil-
ters are marked by triangles in the bottom panel. In addition, the top panel shows
lines of equal dust mass, and the bottom panel gives the ring radii corresponding
to the colors.
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slope qp of the primordial size distribution of largest planetesi-
mals and the slope qg of the size distribution of somewhat smaller,
yet gravity-dominated, planetesimals that already underwent suf-
ficient collisional evolution.With ‘‘standard’’ values of qp and qg ,
the dust mass and the thermal fluxes follow approximately t ! with
! ¼ !0:3 to !0.4.

7. Specific decay laws of the total disk mass and the dust mass
largely depend on a few model parameters. Most important are
the critical fragmentation energy Q$

D as a function of size, the
slope of the primordial size distribution of planetesimals qp and
their maximum size smax, and the characteristic eccentricity e and
inclination I of planetesimals.

8. The property that the maximum possible dust luminosity
for a given age does not depend on the initial disk mass, estab-
lished byWyatt et al. (2007a), is only valid in cases of very rapid
collisional evolution, i.e., in closer in or dynamically very hot disks.
Formost of the systems at ages<10Gyr, an increase of the initial
disk mass leads to an increase of the dust luminosity, unless that
initial mass is assigned extreme values, incompatible with our
understanding of planetesimal disks.

9. Assuming standard material prescriptions and disk masses
and extents, a synthetic population of disks generated with our
analytic model generally agrees with the observed statistics of
24 and 70 "m fluxes versus age. Similarly, the synthetic ½24+!
½70+ colors are consistent with the observed disk colors.

As every model, our numerical model makes a number of gen-
eral simplifying assumptions; the analytic one imposes further
simplifications:

1. The collisional evolution is assumed to be smooth and un-
perturbed. Singular episodes like the aftermath of giant breakups
or special periods of the dynamical evolution such as the late heavy
bombardment are not included.

2. Effects of possible perturbing planets are taken into ac-
count only indirectly: through the eccentricities of planetesimals
(dynamical excitation) and confinement of planetesimal belts (trun-
cation of disks). Further effects such as resonant trapping or ejec-
tion of material by planets are neglected.

3. We only consider disruptive collisions. This is a reasonable
approximation for disks that are sufficiently ‘‘hot’’ dynamically.
However, cratering collisions become important when the rela-
tive velocities are insufficient for disruption to occur.

4. Neither dilute disks under the regime of Poynting-Robertson
drag nor very dense disks with collisional timescales shorter than
orbital timescales and with avalanches (Grigorieva et al. 2007)
are covered by the present work.

5. Explaining the initial conditions or deriving them from the
dynamical history of the systems at early stages of planetesimal
and planetary accretion was out of the scope of this paper. Corre-
lations between diskmasses, disk radii, and the presence of planets,
for example, were not considered, although they might alter the
scalings we found here.

Despite these limitations, our models reproduce, in essential
part, the observed evolution of dust in debris disks. We hope that
they may serve as a starting point for in-depth studies that will
certainly be undertaken in the future, motivated by questions that
remain unanswered, as well as by new data expected from on-
going and planned observational programs.

We wish to thank Jean-François Lestrade Philippe Thébault,
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ded by the Deutsche Forschungsgemeinschaft (DFG), project
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Krivov, A. V., Sremčević, M., & Spahn, F. 2005, Icarus, 174, 105

Laor, A., & Draine, B. T. 1993, ApJ, 402, 441
Lestrade, J.-F., Wyatt, M. C., Bertoldi, F., Dent, W. R. F., & Menten, K. M.
2006, A&A, 460, 733

Liu, M. C., Matthews, B. C., Williams, J. P., & Kalas, P. G. 2004, ApJ, 608,
526

Matthews, B. C., et al. 2007, PASP, 119, 842
Meyer, M. R., et al. 2004, ApJS, 154, 422
———. 2006, PASP, 118, 1690
Michel, P., Tanga, P., Benz, W., & Richardson, D. C. 2002, Icarus, 160, 10
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