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ABSTRACT

Vega-like sources are main-sequence stars that exhibit IR fluxes in excess of expectations for stellar
photospheres, most likely due to reradiation of stellar emission intercepted by orbiting dust grains. We
have identified a large sample of main-sequence stars with possible excess IR radiation by cross-
correlating the Michigan Catalog of Two-dimensional Spectral Types for the HD Stars with the IRAS
Faint Source Survey Catalog. Some 60 of these Vega-like sources were not found during previous
surveys of the IRAS database, the majority of which employed the lower sensitivity Point Source
Catalog. Here, we provide details of our search strategy, together with a preliminary examination of the

full sample of Vega-like sources.

Subject headings: circumstellar matter — infrared: stars

1. INTRODUCTION

Vega-like sources are main-sequence stars with disks or
rings of orbiting dust grains. These circumstellar structures
may be the evolved remnants of once massive disks, perhaps
augmented by debris products generated during the
ongoing disruption of planetesimal-sized bodies (cf,
Backman & Paresce 1993, and references therein). The disks
represent an important end state for material that has
survived—and is being replenished—long after the termina-
tion of the protostellar collapse phase, and beyond the
(presumed) era of planet formation, too. The detailed study
of the composition, size, and spatial distribution of the dust
grains comprising these disks therefore promises rich
insight to the processes by which planetary systems are
created.

Aumann (1985) restricted the adjective “Vega-like” to
main-sequence stars with flux densities at 60 ym that are in
excess of the levels expected for stars of their spectral types,
as evidenced during all-sky survey measurements with the
Infrared Astronomical Satellite (IRAS). We will use the term
“Vega-like ” more flexibly here to describe a main-sequence
star that exhibits excess flux at any IRAS infrared (IR)
wavelength.

The eponymous star Vega (¢ Lyr) was serendipitously
found by Aumann et al. (1984) to be approximately 1 order
of magnitude brighter at far-IR wavelengths than expected
for an AO V star. The additional flux was ascribed to radi-
ation from grains in thermal equilibrium with the stellar
radiation field, and distributed within a shell or ring with an
inner radius of several tens of AU. Shortly after this dis-
covery the A5 V star § Pic, also found to have excess far-IR
emission (Gillett 1986), was observed with an optical
coronagraph by Smith & Terrile (1984), revealing a highly
inclined dust-scattering disk extending out to hundreds of
AU from the star.

The IRAS measurements were the first to identify excess
IR emission from main-sequence stars that are not under-
going significant mass loss from their surfaces. Subse-
quently, many programs of study have sought to
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understand the Vega-like stars within the context of the end
products of the evolution of circumstellar disks associated
with pre-main-sequence stars, the possible formation of
planetesimals and planets, and perhaps even the disruption
of infalling cometary bodies. See the reviews by Backman &
Paresce (1993) and Lagrange-Henri (1995), and see also
Vidal-Madjar & Ferlet (1994). Despite attempts to image
the material around many other Vega-like sources (e.g.,
Smith, Fountain, & Terrile 1992; Kalas & Jewitt 1996), only
one further star, BD +31°643 (Kalas & Jewitt 1997) has
joined B Pic in the select group for which the circumstellar
material has been imaged directly at optical wavelengths.
(Skinner et al. 1995 have imaged a dust structure around
SAO 26804 at A ~ 10 um.) Our information on the nature of
most Vega-like sources has instead been gleaned indirectly
from ground-based optical and near- and mid-IR spectros-
copy and by combining the IRAS measurements with
ground-based near-IR and millimeter-wave photometry for
studies of the continuum spectral energy distributions. In
these ways the composition of grains, together with their
temperature, size, spatial distribution, and total mass, have
all been probed (Chini et al. 1991; Telesco & Knacke 1991;
Skinner, Barlow, & Justtanont 1992; Aitken et al. 1993;
Knacke et al. 1993; Zuckerman & Becklin 1993; Sylvester,
Barlow, & Skinner 1994a, 1994b; Skinner et al. 1995;
Sylvester et al. 1996).

At the same time, various searches of the IRAS catalogs
have been made to try to identify new candidate Vega-like
stars (see below for a summary). In the present work we
provide the results of a new search of the IRAS Faint
Source Survey Catalog (Moshir et al. 1989) for associations
of IR sources with Southern Hemisphere main-sequence
stars listed in the current version of the Michigan Catalog
of Two-dimensional Spectral Types for the HD Stars.
Multiband near- to far-IR photometry of a subset of these
Vega-like candidates is being obtained using the Infrared
Space Observatory (ISO), and we have an ongoing program
of ground-based observations. These measurements will be
discussed in a forthcoming set of papers. Here we provide
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preliminary details of the full set of Vega-like stars identified
in the Michigan catalog. In § 2 we briefly describe earlier
searches of the IRAS data. The database employed for the
present work is described in § 3, together with the criteria
used to select Vega-like sources and the method employed
to identify excess mid- and far-IR fluxes. The results are
tabulated and described in § 4. Our search method is com-
pared in § 5 to those employed in some previous surveys of
the IRAS catalogs, and we discuss our results in § 6.

2. PREVIOUS SURVEYS

At least a dozen searches have been made through the
IRAS database for evidence of IR sources associated with
samples of objects that include stars on the main sequence.
These are summarized in Table 1. Most employed the IRAS
Point Source Catalog, which provides flux densities mea-
sured in four wavelength bands centered approximately at
12, 25, 60, and 100 um, and were limited to particular spec-
tral types and to bright and/or nearby stars. We will briefly
mention the larger surveys here.

The first major search (Walker & Wolstencroft 1988)
used both the full SAO catalog and the Catalog of Nearby
Stars (Gliese 1969), and included the selection criterion that
potential candidates have a 60:100 ym flux density ratio
similar to that of the prototype Vega-like stars. All selected
sources were further required to exhibit evidence for
extended emission in one or more of the IRAS photometric
bands. Of the resulting set of just 34 stars, only half are
known to be on the main sequence. By relaxing both these
restrictions, Stencel & Backman (1991) identified a total of
379 SAO stars with apparent IR excesses but, again, main-
sequence dwarfs comprised only a subset. (See also § 5
below). Oudmaijer et al. (1992) made a similar survey of all
luminosity classes, but with the exclusion of stars with spec-
tral type K and later. (See § 5). Backman & Paresce (1993)
have compiled a list of 54 main-sequence stars with mid-
and far-IR excesses, culled from several of the surveys noted
in Table 1.

3. THE NEW SEARCH FOR VEGA-LIKE SOURCES

3.1. The Database

The aim of the present work is to make a systematic
search for main-sequence stars with IR excesses using the

IRAS Faint Source Survey Catalog (Moshir et al. 1989,
hereafter FSC), which contains information on 173,044
sources in the relatively unconfused regions of sky at Galac-
tic latitudes |b| > 10°, corresponding to approximately
80% of the sky. The FSC has the best limiting sensitivity of
all the available IRAS data products and is approximately 1
mag more sensitive than the IRAS Point Source Catalog,
Version 2, 1988 (hereafter PSC) as a result of co-adding the
full set of point-source—filtered individual detector scans of
any given sky region, in each of the four wavelength bands.
To work with a large sample of stars with accurately
determined luminosity classifications, we have used digi-
tized versions of the four released volumes of the Michigan
Catalog of Two-dimensional Spectral Types for the HD
Stars, which we shall henceforth refer to as the Michigan
Spectral Catalog (MSC: Houk & Cowley 1975; Houk 1978,
1982; Houk & Smith-Moore 1988; Houk 1994). This
ongoing survey provides information on the spectral types
and luminosity classes—the two “dimensions ” in the name
of the catalog—of some 130,397 HD stars in the declination
range 6 = —90° to —12°. Although the four volumes of the
MSC published to date cover less than 50% of the sky, they
include 58% of the stars in the HD catalog (Houk 1994),
due to the offset of the Galactic center to southern decli-
nations. This potential advantage is, however, offset by the
likelihood that the majority of the main-sequence stars
found by our sampling method are relatively nearby, so that
Volumes 1-4 of the MSC may only contain about 50% (or
less) of the main-sequence stars having infrared excesses
that are potentially extractable from the IRAS FSC. For
each star, the MSC records the designation in the HD
catalog, the newly determined spectral type and luminosity
class, the photographic V-band magnitude, and the equato-
rial and Galactic coordinates. Equatorial coordinates are
provided for equinox 1900. Also given are the centennial
precessions in right ascension and declination, which we
have used to transform all equatorial coordinates to
equinox 1950, for consistency with the equinox adopted for
the IRAS catalogs. (Spot checks of the results of these trans-
formations were made by comparing to corresponding
entries in the SAO catalog—equinox 1950.0—and the pre-
cessed coordinates were found to be consistent.) The equa-
torial coordinates listed in Volume 1 of the MSC (Houk &
Cowley 1975) are taken directly from the original HD
catalog and are not sufficiently precise for our purposes:

TABLE 1
PREVIOUS SURVEYS OF THE IRAS DATA CATALOGS

Authors Database

Comments

Aumann 1985............cciiiiiiinn.
Jaschek, Jaschek, & Egret 1986......
Johnson 1986 ............cceveenna..
Odenwald 1986 ..........cccvvnnnn..
Sadakane & Nishida 1986 ...........
Coté 1987 .,
Walker & Wolstencroft 1988 ........
Aumann & Probst 1991 ..............
Patten & Willson 1991 ...............

PSC, various compilations
PSC, Bright Star Catalog
PSC, Bright Star Catalog

Stencel & Backman 1991 ............. PSC, SAO
Chengetal. 1992........cccvennn....
within 25 pc of the Sun

Oudmaijer et al. 1992................. PSC, SAO

PSC,? Catalog of Nearby Stars
PSC, Catalog of Stellar Groups
PSC, compilation of dKe stars

PSC, SAO, Catalog of Nearby Stars

PSC, Catalog of Nearby Stars

PSC, MSC, Bright Star Catalog, Catalog of
Stellar Rotational Velocities

FSC, Bright Star Catalog, Catalog of Stars

Identified eight new Vega-like stars

Ae/A-type shell stars only

K Ve stars only

G-type stars only, including dwarfs

12 new Vega-like stars identified

B and A stars only

Search for sources with IRAS colors of prototypes
Search for 12 um excesses

Main-sequence B, A, and F stars

Included B, A, F, G, K, and M stars of all
luminosity classes
Main-sequence A-type stars only

Included B, A, F, and G stars of all luminosity classes

2 IRAS Point Source Catalog.



332 MANNINGS & BARLOW

right ascension is given to an accuracy of 0.1 minute of time,
and declination to 1'. (Volumes 2—4 provide positions that
are accurate to 0.1 s in right ascension, and to 1” in decli-
nation.) We have cross-correlated the records in Volume 1
(according to HD designation) with the SAO catalog in
order to exploit the accurate coordinates provided by the
latter. The resulting subset (52%)* of Volume 1 stars is used
together with Volumes 2—4 throughout the present work,
providing a combined set of 112,971 stars.

3.2. Procedure for Identification of Sources

To be considered as Vega-like candidates, associations of
MSC stars with FSC IR sources are required to satisfy the
following criteria:

1. The separation on the sky must be <60”. As a result,
83% of MSC stars are rejected, leaving 19,480 in total.

2. The quality of the IRAS flux densities of the position-
associated sources must be flagged in the FSC as either
“excellent” or “moderate,” which correspond respectively
to “FQUAL ” flags 3 and 2. (FQUAL = 1 signifies a nonde-
tection.) To avoid spurious associations with Galactic
“cirrus ” emission at 60 and 100 um, we accept only candi-
dates with excellent/moderate detections in one of the fol-
lowing combinations of wavelength bands: (a) 12, 25, and
60 um (b) 12 and 25 um (c) 25 and 60 um. On these criteria, a
further 14,158 MSC stars are rejected, producing a subset of
5322 sources.

3. To restrict ourselves to main-sequence stars, we next
reject those sources with MSC luminosity classifications in
the range I-IV. A small subset of 294 MSC/FSC candidates
for which the MSC claims a luminosity class of V then
remains. Note that we exclude from this subset all sources
for which a main-sequence classification is uncertain, i.e.,
those classed in the MSC as ITI/V or IV/V.

4. Finally, we are left with just 131 stars after rejecting
163 luminosity class V MSC stars that fail to exhibit signifi-
cant IR flux excesses above the photospheric values
expected at or longward of A =12 um. The scheme for
defining these excesses is described below.

3.3. Method for Testing for Excess IR Emission

Let the 12, 25, and 60 um flux densities listed in the FSC
for any given source be F,,, F,5, and F,, respectively. We
consider the two ratios of flux densities defined by

F
R12/25 = F_12 (1)
25
and
F
R25/60 = ﬁ . ()]
60

By comparing the ratios of measured flux densities to the
ratios expected for a star of given spectral type, we have a
simple and straightforward method for automating the
rejection of those stars without significant mid- to far-IR

118,956 stars from the 36,382 stars of Volume 1.
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excesses.” We know from the FSC the (independent) uncer-
tainties, 6F, on each of the IRAS flux densities, so that we
immediately obtain an expression for the error on the
observed 12:25 um ratio:

2 2
5Ry3)0s = +Fe <5F12> +<5F25) . o

T Fys Fq, Fs
Similarly,
F O0F,5\? O0F ¢o \?
0Ry5/60 = £ 22 2) + o I 4
Feo Fs Feo

We compute expected photospheric ratios (RY,,s and
R%5,60) using the MSC spectral types and blackbodies cor-
responding to the stellar effective temperatures determined
by Gray & Corbally (1994). Discrepancies at significance
levels greater than 1 o between the observed and the
expected ratios therefore occur when

A12/25 = R12/25 B R>lk2/25 < _1 (5)
5obs 5R12/25
and/or
A25/60 = R25/60 _ R§5/60 < —1. (6)
5obs 5R25/60

In other words, we claim that one or more of the observed
flux densities significantly exceed expectation for a dust-free
stellar photosphere if either or both of the inequalities in
equations (5) and (6) are satisfied. (We do not use any flux
density with an FSC quality flag of 1, regardless of the ratio
of the flux density and its listed 1 ¢ uncertainty.) Note that
we implicitly assume that all MSC spectral types are free of
error, so that

5R72/25 = 5R§5/60 =0. (7)

We note that the blackbody photospheric flux ratios that
we adopted for our comparisons correspond to monochro-
matic flux density ratios at the standard wavelengths of the
IRAS filters, rather than to the in-band flux ratios for the
IRAS filters. However, for a 5000 K blackbody the 12 and
25 um monochromatic flux ratio is 4.084, while the in-band
flux ratio is 4.172 (IRAS Explanatory Supplement 1988),
which differ by only by a factor of 1.021, while for a 10,000
K blackbody the ratios are 4.225 and 4.345, differing by
only a factor of 1.028. Not only are these differences of less
than 3% between the blackbody monochromatic and
in-band flux ratios very much smaller than the deviations
exhibited by the sources found to have excesses (see Fig. 1),
but our requirement for an excess relative to blackbody
monochromatic flux density ratios is more conservative
than comparing to blackbody in-band flux ratios, since
slightly more emission is required from a star at the longer
wavelength before it is classified as having an excess. The
same remarks apply to the 25/60 um blackbody flux ratio
criterion. We also note that Kurucz LTE model atmo-
spheres for A-type stars predict photospheric infrared
energy distributions that are even slightly more steep than
for blackbodies, e.g., the 9850 K, log g = 4.25 model for
Sirius presented by Cohen et al. (1992) predicts 12/25 um

2 Only raw FSC flux densities are used: i.e., we attempt no bandpass
color corrections in the absence of prior knowledge of the temperature
distribution of all material contributing to any excess infrared emission
from a given source.
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FiG. 1.—Diagrammatic comparison of flux density ratios for all sources
(new and previously recognized) that have excellent- or moderate-quality
FSC measurements in each of the three 12, 25, and 60 ym bands, and for
which at least one of the ratios departs from the photospheric value at the
3 o level or more. Ratios for main-sequence photospheres are indicated at
the top right for stars with spectral types from MO to BO.

monochromatic and in-band flux ratios of 4.325 and 4.558,
respectively. Thus our requirement for longer wavelength
excesses to be relative to photospheric blackbody mono-
chromatic flux ratios is the most conservative of the above
set that could have been adopted.

It is important to be clear about what will be accepted or
rejected by this simple algorithm, and to check that we are
neither falsely accepting spurious IR-excess sources nor
incorrectly rejecting true excess sources. Since we are simply
taking ratios of flux densities and then comparing them to
the ratios expected for a star of given spectral type, we can
easily enumerate all conceivable outcomes. Note that in the
following we refer to the continuum spectral energy dis-
tribution (SED) of a given star. In no case have we com-
puted and fitted a SED to a set of FSC flux densities: we
compare ratios of flux densities and are therefore not con-
cerned with absolute values. We simply list each of the ways
in which the FSC fluxes can, in principle, exhibit ratios that
are either consistent or inconsistent with expectation for a
stellar SED.

3.3.1. Rejected Sources

There are only three cases that can, in principle, lead to
the observed and expected ratios being consistent, and both
of the two cases that could actually occur in practice would
justify rejection of a source (i.e., there should be no false
rejections):

Case 1—The FSC flux densities are consistent with
expectation for the stellar SED. The ratios would, of course,
also be consistent with expectation, so that the star would
be correctly rejected by our test.

Case 2—The observed flux density ratio is consistent
with expectation, and all FSC flux densities are in fact sig-
nificantly above the stellar SED at mid- and far-IR wave-
lengths. This can occur only if FSC fluxes are dominated by
emission from a second source at a similar temperature,
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thereby excluding thermal emission from grains, which will
be much cooler. The second source would most likely be a
star, which could be either a companion to the star in ques-
tion, or a field star within the IRAS beams. Again, our ratio
test would correctly reject the source.

Case 3—The observed flux density ratio is consistent
with expectation, and the FSC flux densities are significantly
below the stellar SED; although conceivable, this case
cannot arise in practice since it would require a deficit in the
stellar SED at mid-IR wavelengths.

3.3.2. Accepted Sources

Similarly, there are only three cases that can, in principle,
lead to a significant difference between the observed and
expected ratios, and both of the two cases that could
actually occur in practice would demand that a source be
accepted (i.e., there should be no falsely accepted sources):

Case 4—A significant discrepancy exists between the
observed and the expected flux density ratios, and the 12,
25, and 60 um FSC fluxes are in fact above the stellar SED.
Assuming that the MSC and FSC sources are physically
associated (and are not distinct sources that are coinci-
dentally within the IRAS beam), the source is correctly
accepted by our ratio test. The implication would also be
that excess emission begins at a wavelength shortward of 12
um.

Case 5—A significant discrepancy exists between the
observed and expected flux density ratios, but the 12 um
flux is consistent with the stellar SED. This implies that
excess emission begins longward of A =12 um, but the
source would nonetheless be correctly accepted by our test.
Similarly, for the (rare) case where FQUAL =1 at 12 um
but there are good measurements at 25 and 60 um, there
could be a significant discrepancy between the observed and
expected 25:60 um ratios, while the 25 ym flux is consistent
with the stellar SED. This would imply excess emission
beginning longward of 25 um, but we would again accept
the source correctly.

Case 6.—A significant discrepancy exists between the
observed and expected flux density ratios, and one or more
FSC flux densities are below the stellar SED. As for case 3
above, this scenario cannot arise in practice since it would
again require a deficit in the mid-IR region of the photo-
spheric SED.

4. RESULTS

Our selection criteria compel us to reject 99.9% of
112,971 stars in the MSC, leaving a total of 127 stars.® (The
breakdown by MSC volume is 35 stars from Volume 1, 27
from Volume 2, 32 from Volume 3, and 33 from Volume 4.)
Some 108 of these sources are candidate main-sequence
stars with debris disks. (The remainder are classical Be
stars: see below.) Of these, a subset of 73 stars were not
identified during the previous searches summarized in § 2.
These “new ” Vega-like sources are listed in Table 2. A total
of 60 of these new stars exhibit discrepancies between
observed and expected flux density ratios at greater than
the 3 o level. The 35 previously known MSC Vega-like stars
are shown in Table 3. In Table 4 we list a further 12 stars

3 In two instances, a single FSC source was found to be associated with
two MSC stars that otherwise satisfied all the selection criteria; this
occurred for the pair HD 24071 and HD 24072, and for the pair HD 35722
and HD 35736. These stars have been omitted.
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MAIN-SEQUENCE STARS WITH DEBRIS DISKS 339

that satisfy all of our selection criteria, but where the assign-
ment by the MSC of a luminosity class of V is uncertain.
Stars labeled by footnote “d” on their sequence numbers
(col. [1] of Table 4) have not been identified in previous
surveys of the IRAS catalogs. All other stars were found by
one or more of the surveys listed in Table 1. In Table 5 we
show 19 classical Be stars of class V that were extracted
during our search (and identified using the SIMBAD
database), plus two Be sources with uncertain luminosity
classifications. We will not consider the classical Be stars
any further. Stellar proper motions are not included in the
MSC, but we have used proper motions listed in the SAO
catalog to examine the optical coordinates of the stars in
Tables 2 and 4 a posteriori, and thereby check for spurious
positional associations of MSC stars and FSC IR sources.
Resultant proper motions range from 071 to 41", with a
mean value of just 572 during the interval of time separating
the epoch of the coordinates in the HD catalog (or, for MSC
stars at declinations south of —53°, the SAO catalog) and
the epoch of the IRAS measurements. The separations of
the proper-motion—corrected coordinates and the nominal
coordinates of the FSC sources are less than 60” for all but
two of the objects in Tables 2 and 4. The stars HD 184800
and HD 212283 are separated from their candidate FSC
associations by 66”9 and 60’5, respectively. Formally, they
would be rejected by our selection criteria (which stipulate
separations up to 60”) but, since they exceed the search
radius only marginally, we will retain them in our sample
here. Some eight stars listed in Table 2 have no entry in the
SAO catalog; in the absence of knowledge of their proper
motions, these source candidates should be regarded with
caution. Note that relatively nearby, high proper-motion
sources could conceivably have been rejected mistakenly,
since cumulative proper motions were not determined for
the full set of MSC stars prior to positional association with
the FSC. Our survey is therefore likely biased to the detec-
tion of the more distant debris disk sources.

In each of Tables 2 to 5 we provide, in ascending order of
HD number, our sequence number (col. [1]), the SAO and
HR numbers (where applicable), the name of the star, the
MSC spectral classification, the quality flags for the four
IRAS bands, and the FSC flux densities with 1 ¢ uncer-
tainties. (Stellar coordinates are readily obtainable from
on-line archives such as SIMBAD.) Columns (12) and (13)
contain, for each star, our measures of the significance of the
discrepancies between the observed mid- to far-infrared flux
density ratios and the expected photospheric values, given
the MSC spectral type. These columns correspond, respec-
tively, to the values computed for the left-hand sides of the
inequalities in equations (5) and (6) derived earlier: null
entries are made when the quality flag of either the 12 um or
the 25 um flux density is equal to unity. Included in the two
Tables are only those stars for which inequalities in equa-
tions (5) and/or (6) hold. Such restriction to the >1 ¢ cri-
terion is hardly conservative, but we include all such
sources so that, should the reader prefer, a higher cutoff
level can be adopted and a subset of the sources taken. We
will discuss only the >3 o sources below.

Note that we accept stars of all spectral types that meet
the criteria described in § 3, including 26 stars earlier than
A0 with excesses >3 o. In the absence of any knowledge of
the interstellar environment of these luminous stars we have
made no attempt to exclude them, although the reader
should keep in mind the possibility that at least some of the

excess IR emission from these sources could be due to the
heating of local interstellar material.

We made a further inspection of the 60 sources in Table 2
with discrepancies between observed and expected ratios
above the 3 ¢ level. Each source was examined using the
on-line IRSKY facility provided by the Infrared Processing
and Analysis Center, which we employed to confirm all of
the FSC flux densities obtained via our catalog manipula-
tion, and to determine whether or not any of the stars also
have positional associations with PSC objects. We found
that 38% of the 60 stars (23 sources) have no entry in the
PSC. Of the remainder, 13 stars have just one PSC mea-
surement with an FQUAL flag >2 at 12, 25, or 60 um; 24
stars have two or three measurements in these bands with
FQUAL > 1. There are many possible reasons why these
latter stars were not identified during the surveys of the
PSC. For example, 11 of the 24 stars have no entries in the
SAO catalog and/or would have been filtered out by the
criteria on FQUAL used by the two largest and most recent
surveys, which we briefly discuss next.

5. COMPARISON TO PREVIOUS METHODS

We consider the methods used for two large surveys of
the IRAS PSC by Stencel & Backman (1991) and
Oudmaijer et al. (1992).

To obtain their sample from the SAO catalog, Stencel &
Backman (1991) assumed that 12 ym flux densities listed in
the PSC were photospheric in origin, and a test was then
made for IR excesses by comparing observed flux densities
at 25, 60, and 100 um to values predicted using 12:25, 12:60,
and 12:100 ratios for “normal” (dust-free) stars. As here,
they used the errors on the flux densities to identify sources
with significant excesses. However, to define photospheric
ratios, they used median values of observed 12:25 um ratios
from their entire sample of position-associated stars, aver-
aged over whole spectral type bands. These ratios were then
used to derive equivalent color temperatures, with which
12:60 and 12:100 um ratios were computed. Their 12:25 ym
ratios for each spectral band (B, A, F, G, K, and M) turn out
to be slightly less than would be predicted for blackbody
emission. This is presumably due in part to the fact that
some 7% of their sample of stars subsequently appear
actually to have significant excess IR emission. They also
speculate (cf., Cohen et al. 1987) that normal stars in general
might have slight IR excesses.

Rather than attempt to determine photospheric ratios a
priori and in a statistical fashion using a sample that would
most likely include stars with circumstellar grains, we pre-
ferred to employ blackbody ratios, source-by-source, for
each spectral subclass. We computed the photospheric
ratios using the relatively accurate spectral types assigned
by the MSC; Stencel & Backman (1991) adopted the less
reliable spectral types listed in the SAO catalog, hence their
use of whole spectral bands, although it must be noted that
at far-IR wavelengths there is in fact little spread in the
ratios across any given band. Note also that, since Stencel
& Backman used the 12 ym flux density only to scale the
predicted flux densities at 25, 60, and 100 um and probe for
excess emission in these latter bands, their sample could
include stars with or without excess emission at 12 ym.

However, the Stencel & Backman (1991) technique could
lead to some stars with genuine IR excesses nevertheless
being rejected. First, a 12 ym flux that is in fact in excess of
the photospheric value for a given star would of course lead
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to an overestimation of the predicted photospheric 25 um
flux: it could sometimes happen that the flux measured at
25 pm is in reality also significantly above the photospheric
level, but nonetheless at or below the high predicted value,
which would lead to a false rejection of the star. We avoid
this possibility in the present work by taking flux ratios,
rather than using absolute values. Second, the demand for a
12 pym detection obviously excludes all sources that are
detected with moderate or excellent quality only at 25 and
60 um; such sources account for 6% of our final sample in
Tables 2 and 3. A comparable fraction may have been
missed by Stencel & Backman (1991).

Oudmaijer et al. (1992), like Stencel & Backman (1991),
cross-correlated the SAO catalog with the IRAS PSC and
searched for IR excesses from stars of various spectral types
and luminosity classes. However, instead of comparing
IRAS flux densities or flux density ratios directly,
Oudmaijer et al. (1992) derived 12, 25, and 60 ym magni-
tudes, after which they inspected the resulting scatter in a
[25] — [60], [12] — [25] diagram and searched for avoid-
ance of the locus defined by photospheric colors.

6. DISCUSSION

In Figure 1 we plot F,s/F¢, against F,,/F,s for the
subset of 50 of the 108 new and previously identified Vega-
like stars (Tables 2 and 3) that have excellent- or moderate-
quality detections in all three of the 12, 25, and 60 um
bands, and for which at least one of the flux density ratios
deviates from the computed photospheric value by 3 ¢ or
more. The (short) locus for blackbody main-sequence
photospheres is drawn at the top right of this diagram. Note
that the handful of data points (four stars) with “forbidden ”
excursions either above or to the right of the main-sequence
locus are nevertheless within 1 to 2 ¢ of it. Also, not sur-
prisingly, given the proximity of all photospheric mid-IR
SEDs to Rayleigh-Jeans curves, it becomes clear that the
assumption in equation (7) concerning errors on the stellar
spectral types is irrelevant for these sources, since they all
have at least one ratio that avoids the entire main-sequence
locus.

Two of the prototype Vega-like stars, f Pic and Fomal-
haut (« PsA), were extracted during our search, and it can
be seen that they both lie in well-populated regions of
Figure 1: evidently, their mid- and far-IR colors are not
unusual.

In Figure 2 we show a histogram of the 88 new and
previously recognized MSC Vega-like stars with at least
one flux density ratio that is discrepant with the photo-
spheric value at the 3 o level or higher. The abscissa is
stellar effective temperature (T,y), and the sources are
grouped into bins of width 0.1 dex. MSC spectral types were
converted to temperatures using the calibrations by Gray &
Corbally (1994). (Spectral types are shown along the top of
Fig. 2.) The distribution of sources is seen to rise quickly
with decreasing T, until we reach early A-type stars. There
is a dip for late A stars (reflecting the smaller number of
stars classified as such) followed by a second peak around
GO0, below which the distribution cuts off (T < 4500 K).
The latter characteristic is most likely due to the limiting
sensitivity of the measurements in the FSC rather than to a
paucity of debris disks around stars of spectral type mid-G
and later. Combining the data of Tables 2, 3, and 5, we find
that 43 stars with spectral types earlier than B8 are selected
by our criteria, of which 21 are classical Be stars (Table 5)
with free-free excesses. The remaining B stars (in Tables 2
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FiG. 2—Histogram of the number of stars versus stellar effective tem-
perature, for new and previously identified sources with at least one IRAS
flux ratio that is discrepant by 3 ¢ or more with the expectation for a
blackbody of the corresponding stellar effective temperature.

and 3) show excesses attributable to dust emission,
although in the case of some of the more luminous early
B-type stars (e.g., @ Sco, 2 Sco, 13 Sco), this emission may
arise from warm dust in surrounding reflection nebulae.

7. CONCLUSIONS

We have used the positions and luminosity classes of
Southern Hemisphere sources listed in the Michigan
Catalog of Two-dimensional Spectral Types for the HD
Stars together with the positions, data-quality flags, and
flux densities of mid- and far-IR sources in the IRAS Faint
Source Survey Catalog to isolate a sample of main-sequence
stars with possible excess IR emission, most likely indicative
of thermal radiation from dust grains in associated debris
disks. Our search criteria extracted a total of 108 main-
sequence stars with possible IR excesses, 73 of which have
not been previously identified. For some 60 of these “new”
candidate Vega-like stars, measured IR flux density ratios
and expected photospheric ratios are discrepant above the 3
o level. Further analysis of a subset of the new sources will
be made following near- to far-IR photometry with the
Infrared Space Observatory and ground-based optical and
IR photometry and spectroscopy.
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