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Predictions for a planet just inside Fomalhaut’s eccentric ring
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ABSTRACT
We propose that the eccentricity and sharpness of the edge of Fomalhaut’s disc are due to a
planet just interior to the ring edge. The collision time-scale consistent with the disc opacity
is long enough that spiral density waves cannot be driven near the planet. The ring edge is
likely to be located at the boundary of a chaotic zone in the corotation region of the planet.
We find that this zone can open a gap in a particle disc as long as the collision time-scale
exceeds the removal or ejection time-scale in the zone. We use the slope measured from
the ring edge surface brightness profile to place an upper limit on the planet mass. The re-
moval time-scale in the chaotic zone is used to estimate a lower limit. The ring edge has
eccentricity caused by secular perturbations from the planet. These arguments imply that the
planet has a mass between that of Neptune and that of Saturn, a semi-major axis of approx-
imately 119 au and longitude of periastron and eccentricity, 0.1, the same as that of the ring
edge.

Key words: stars: individual: Fomalhaut – planetary systems – planetary systems: protoplan-
etary discs.

1 I N T RO D U C T I O N

The nearby star Fomalhaut hosts a ring of circumstellar material
(Aumann 1985; Gillett 1985) residing between 120 and 160 au
from the star (Holland et al. 1998; Dent et al. 2000; Holland
et al. 2003). The ring is not axisymmetric. Spitzer Space Telescope
infrared observations of Fomalhaut reveal a strong brightness
asymmetry in the ring (Stapelfeldt et al. 2004; Marsh et al. 2005).
Submillimetre observations are less asymmetric in brightness but
also imply that the ring is offset, with the southern side nearer
the star than the opposite side (Holland et al. 2003; Marsh et al.
2005). Recent Hubble Space Telescope (HST) observations show
that this ring has both a steep and eccentric inner edge (Kalas,
Graham & Clampin 2005). In this Letter we explore dynamical
scenarios involving a planet that can account for both the eccentric-
ity of the ring edge and its sharp or steep surface brightness edge
profile.

Two classes of theoretical models exist for non-transient eccentric
rings that do not rely on dynamics induced by radiation pressure.
These are the pericentre glow model (Wyatt et al. 1999) and the self-
gravitating eccentric ring models (e.g. Goldreich & Tremaine 1979;
Tremaine 2001; Papaloizou & Melita 2005). The self-gravitating
ring models have primarily been used to explain eccentric plane-
tary rings. Though the structure of the ring edge can impact the
models (Chiang & Goldreich 2000), the ring edges are not integral
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to the model; instead, the rings are truncated by torques driven by
neighboring satellites.

The pericentre glow model can account for eccentricity in the disc
surface brightness distribution of Fomalhaut’s disc (Stapelfeldt et al.
2004; Marsh et al. 2005). Secular perturbations from a planet interior
to the ring cause particle eccentricities to be coupled with their
longitudes of periastron. The forced particle eccentricities cause an
asymmetry in the dust distribution such that the ring periastron is
aligned with the planet’s periastron. Previous studies have not placed
constraints on the location of the planet that is causing the forced
eccentricity in Fomalhaut’s disc, consequently constraints on the
planet’s mass and eccentricity are lacking (Wyatt et al. 1999; Marsh
et al. 2005).

We briefly review the observed properties of Fomalhaut’s disc.
The recent HST observations have revealed that the ring edge has
eccentricity eedge = 0.11 ± 0.01, periastron at PA = 170◦, inclination
65.◦6, and a semi-major axis a edge = 133 au (Kalas et al. 2005). The
surface brightness at the edge drops by a factor of 2 within 10 au (see
fig. 3 by Kalas et al. 2005). This can be compared to the resolution
of HST , 0.1 arcsec, corresponding to only 0.75 au at the distance
of Fomalhaut. The slope of the disc edge was modelled with a disc
scaleheight of 3.5 au corresponding to an opening angle of 1.◦5
(Kalas et al. 2005). However, the observed disc edge slope could
either be due to the thickness of the disc or a drop in the planar surface
density profile. Assuming an exponential dust density distribution in
the form exp[− (aedge−a)

hr
− |z|

hz
], the observed disc edge slope implies

that either hr/r ∼ 0.026 and 2h z < hr or the disc aspect ratio
h z/r ∼ 0.013 and 2h z > hr . The equation of hydrostatic equilibrium
can be used to place a limit on the velocity dispersion, u, of the dust
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particles, u/na ! 0.013, where n is the mean motion at a semi-major
axis a.

The age of the star is 200 ± 100 Myr (Barrado y Navascues 1998).
The mass of the star is 2 M% (Song et al. 2001), so the rotation period
at 130 au is 1000 yr. This orbital rotation period divided by the age
of the star is 105. The optical depth (normal to the disc plane) just
interior to the ring edge at 24 µm is τ ∼ 1.6 × 10−3 (Marsh et al.
2005). The collision time in the ring, t col ∼ (τn)−1, is a million
years or 1000 orbits. As this time-scale is short, we can exclude
Poynting–Robertson driven resonance capture models for the dust,
as argued in detail by Wyatt (2005).

2 T H E P E R I C E N T R E G L OW M O D E L A N D A N
E C C E N T R I C E D G E I N F O M A L H AU T ’ S D I S C

We follow the theory for secular perturbations induced by a planet
(e.g. Murray & Dermott 1999; Wyatt et al. 1999). Secular perturba-
tions in the plane can be described in terms of the complex eccen-
tricity variable, z = e exp(i# ), where e is the object’s eccentricity
and # is its longitude of periastron (e.g. Murray & Dermott 1999;
Wyatt et al. 1999). The time variation of z is

ż = zforced + zproper(t) (1)

where

zforced =
b2

3/2(α)

b1
3/2(α)

ep exp(i#p) (2)

(Murray & Dermott 1999; Wyatt et al. 1999). We denote the planet’s
semi-major axis, eccentricity and longitude of periastron as ap, ep

and # p, respectively. Here α = ap/a if ap < a otherwise α =
a/ap. The functions, b j

s (α), are Laplace coefficients (see Murray
& Dermott 1999 for definitions and numerical expressions). If the
periastron of the planet does not vary (as for the two-body problem)
then z forced is a constant of motion. In this case the forced complex
eccentricity depends only the semi-major axis and eccentricity of
the planet, and not on its mass.

The ratio of Laplace coefficients b2
3/2(α)/b1

3/2(α) < 1, so the am-
plitude of the complex eccentricity variable, |z forced |, cannot exceed
the eccentricity of the planet. If the planet is near the ring edge then
α is near 1. Near the planet limα→1[b2

3/2(α)/b1
3/2(α)] = 1 and |z forced|

= ep. If the planet is near the ring edge then the forced eccentricity
is equal to that of the planet.

We now consider the density distribution from a distribution of
particles. Particles with the same semi-major axis, different mean
anomalies and zero free or proper eccentricities would be located
along a single ellipse. If the free eccentricities are non-zero then
the density distribution is smoother than the zero free eccentricity
ellipse and has a width of twice the free eccentricity multiplied
by the semi-major axis. Consequently the observed steepness of the
disc edge limits the distribution of free eccentricities in the edge. We
denote the free eccentricity dispersion, u2

e = 〈e2
proper〉. The slope of

Fomalhaut’s disc edge hr/r ! 0.026 so the free eccentricities in the
disc edge are ue ! 0.026. If the planet is responsible for truncating
the disc and limiting the distribution of free eccentricities then we
suspect that the planet is located near the disc edge and α is almost 1.
If the ring eccentricity is due to secular perturbations from a planet
then the eccentricity of the hypothetical planet ep is equal to that of
the edge or ep ∼ 0.11.

Because they are inelastic, collisions damp the eccentricities and
inclinations of an ensemble of particles. This damping leads to a
distribution following nearly closed (non-self-intersecting) orbits.
Near a planet the only non-intersecting, closed orbits consist of

those with zero free eccentricity and with eccentricity equal to the
forced eccentricity.

3 S P I R A L D E N S I T Y WAV E S A N D T H E
C O L L I S I O N T I M E - S C A L E

In a high opacity, τ ∼ 1, disc spiral density waves are driven by a
planet or satellite near the planet. A gap opens if the torque from
the planet exceeds that from accretion and the minimum gap width
is twice the size of the Hill sphere of the planet (e.g. Borderies,
Goldreich & Tremaine 1989).

As pointed out two hundred years ago by Poisson, some form
of interaction between particles is needed for secular transport to
occur. Satellites or planets do not exert a torque on a collisionless
disc. However, planetesimals in the corotation region are efficiently
pumped to high eccentricity and ejected by the planet or other in-
terior planets (e.g. David et al. 2003; Mudryk & Wu 2006). In this
case the width of a gap opened near the planet would be given by
equation (5), as is discussed further in Section 4. For planet mass
objects the width of this chaotic zone exceeds that set by the Hill
radius because 2/7 is smaller than 1/3.

The separation between collisional and collisionless discs is im-
portant as the opacity of the disc (setting the collision time-scale) is
an observable. Franklin et al. (1980), Goldreich & Tremaine (1980)
and Lissauer & Espresate (1998) showed that spiral density waves
were efficiently driven at a Lindblad resonance by a satellite when
the collision time-scale was above a critical one, t crit, where t crit ∝
µ−2/3, and µ ≡ m p/M ∗ is the ratio of the planet mass divided by
that of the star. This has been confirmed numerically with simula-
tions of low opacity collisional particle discs at individual Lindblad
resonances (Franklin et al. 1980; Hanninen & Salo 1992; Espresate
& Lissauer 2001). Lissauer & Espresate (1998) predicted this scal-
ing by comparing the period of excited epicyclic oscillations at a
Lindblad resonance with the collision time-scale. Near a planet a
series of resonances is encountered. The j : j − 1 mean motion
resonance (corresponding to the m = j − 1 Lindblad resonance)
has a period approximately equal to the renormalization factor in
equation (7) by Quillen (2006), or

pe ∼ n−1|δ1,0a′|−2/3 = n−1

∣∣∣∣
3 j2µ

√
2

2π da

∣∣∣∣
−2/3

(3)

with coefficients described by this work, and evaluated above in
the limit of large j. In the limit of small da, and setting the critical
time-scale to this period, t crit = pe,

tcritn ∼ µ−2/3 j−2 ∼ µ−2/3 da2. (4)

We have recovered the scaling with planet mass predicted by pre-
vious works (Goldreich & Tremaine 1980; Franklin et al. 1980;
Lissauer & Espresate 1998) but have also included a dependence on
distance from the planet.

The above critical time-scale, t crit, (appropriate for small da) in-
creases with distance from the planet. For a disc with a particular
collision time-scale, spiral density waves would be driven past a
particular distance from the planet. Because the Hill sphere radius
is proportional to the planet mass to the 1/3 power, equation (4) im-
plies that t crit is of order 1 at the Hill sphere radius. Only collisional
discs, τ ∼ 1, could have a disc edge extending to the planet’s Hill
sphere. Because the opacity of Fomalhaut’s disc is sufficiently low
that spiral density waves cannot be driven into the disc by a nearby
planet, the disc edge must be maintained by a different dynamical
process.
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4 V E L O C I T Y D I S P E R S I O N AT T H E E D G E
O F T H E C H AO S Z O N E

There is an abrupt change in dynamics as a function of semi-major
axis at the boundary of the chaos zone in the corotation region near
a planet. The width of this zone has been measured numerically and
predicted theoretically for a planet in a circular orbit by predict-
ing the semi-major axis at which the first-order mean motion reso-
nances overlap (Wisdom 1980; Duncan, Quinn & Tremaine 1989;
Murray & Holman 1997; Mudryk & Wu 2006). The zone boundary
is at

daz ∼ 1.3µ2/7, (5)

where da z is the difference between the zone edge semi-major axis
and that of the planet divided by the semi-major axis of the planet.

In Section 2 we found that the free or proper eccentricities are
likely to be limited by the observed disc edge slope. A collision
could convert a planar motion to a vertical motion similar in size,
suggesting that the disc velocity distribution is not highly anisotropic
so we may assume h z/r " ue. A collision could also increase or
decrease the particle semi-major axis and eccentricity. Particle life-
time is likely to be strongly dependent on semi-major axis, so we
expect a sharp boundary in the semi-major axis distribution. The
slope in the disc edge is likely to be set by the vertical scale-
height and velocity dispersion in the disc edge. We estimate that
h z/r ∼ ue ∼ 0.013. Here the value of 0.013 is half the scale-
height measured by Kalas et al. (2005) (see discussion at the end of
Section 2).

Outside the chaos zone, planetesimals still experience perturba-
tions from the planet. These perturbations have a characteristic size
set by the size of perturbations in the nearest mean-motion reso-
nance that is not wide enough to overlap others and so is not part of
the chaotic zone. As particles in the edge reside outside the chaotic
zone, the velocity dispersion does not increase with time. Via nu-
merical integration we find a relation, shown in Fig. 1, between the
planet mass and the proper eccentricity dispersion just outside the
chaos zone.

The numerical integrations were carried out in the plane, using
massless and collisionless particles under the gravitational influence
of only the star and a massive planet with eccentricity ep = 0.1. The
initial particle eccentricities were set to the forced eccentricity and
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Figure 1. Eccentricity dispersion in the disc edge vs planet mass for a planet
with eccentricity ep = 0.1 (square points). The solid line is ue = 0.8 µ3/7. The
scaling with µ3/7 is predicted for the libration in the first order mean motion
resonance just outside the corotation region. The horizontal line shows the
limit set from the observed disc edge slope.

the longitudes of periastron were chosen to be identical to that of
the planet. Initial mean anomalies were randomly chosen. The free
eccentricity distribution was measured after 105 planetary orbits.
However, ue reached the steady-state value much earlier in the in-
tegrations, at a time less than a hundred planetary orbits and much
shorter than the collision time-scale.

The libration width for a j : j − 1 mean motion resonance has
e2 ∼ µ2/3 j2/3 (using the high-j limit of equation 7 by Quillen
2006). Setting j ∼ µ−2/7 corresponding to the chaos zone boundary
we estimate an eccentricity dispersion ue ∼ µ3/7 just outside the
chaotic zone. This dependence on µ is shown as a solid line in
Fig. 1 and is a good match to the numerically measured dispersion
values in the disc edge.

Fomalhaut’s disc edge slope can be used to place a limit on the
planet mass if we assume that the disc edge is bounded by the chaotic
zone of the planet. We use the limit, ue ∼ 0.013, based on the disc
edge slope and shown as a horizontal line on Fig. 1, to estimate
the mass of the planet. This horizontal line is consistent with the
eccentricity dispersion at the edge of a chaos zone for a planet of
mass µ ∼ 7 × 10−5. As the mass of Fomalhaut is twice that of the
Sun, this corresponds to a planet mass similar to that of Neptune.
For this simulation the distance between the planet semi-major axis
and disc edge has d a ∼ 0.13, approximately consistent with the
µ2/7 law and corresponding to a semi-major axis of a planet of
119 au.

If the velocity dispersion in the disc edge is due to perturbations
from massive objects in the ring then it would exceed that estimated
from our integrations. In this case the planet maintaining the disc
edge could be lower, but not higher, than that estimated above. The
mass ratio µ = 7 × 10−5 can be regarded as an approximate upper
limit for the planet mass.

5 R E M OVA L T I M E - S C A L E F RO M
T H E C O ROTAT I O N R E G I O N

As they are inelastic, collisions damp the eccentricities and incli-
nations of an ensemble, unless they are rapidly transported else-
where. Because they change orbital parameters, collisions cause
diffusive spreading of the particle distribution in an initially sharp
ring edge. A particle that is knocked into an orbit with a semi-major
axis within the chaotic zone can be scattered by the planet and
ejected from the region. To maintain the low dust density within the
ring edge, we infer that the removal time-scale within the ring must
be shorter than the rate at which particles are placed interior to the
ring.

We can approximate the dynamics with a diffusion equa-
tion where diffusion due to collisions in the disc edge is balanced
by the rapid removal of particles on a time-scale t removal inside the
edge. In steady-state, the diffusion equation

∂

∂a

(
D

∂N
∂a

)
≈ N

tremoval
, (6)

(Melrose 1980; Varvoglis & Anastasiadis 1996), where N(a) is the
number density of particles with semi-major axis a. The diffusion
coefficient, D, depends on the collision time and the velocity dis-
persion, u, in the disc, D ∼ u2/(t coln2). This diffusion coefficient is
similar to a viscosity and can be estimated by considering the mean
free path and particle velocity differences set by the epicyclic ampli-
tude. The removal time-scale t removal is set by the dynamics within
the chaos zone and depends on the planet mass and eccentricity. The
above equation is satisfied when N(a) decays exponentially with a
scalelength l, and l2 = Dtremoval.
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As the removal time-scale depends on the planet mass and eccen-
tricity, it is useful to write

tremoval = l2/D =
(

l
h

)2

tcol (7)

In Section 4 we argued that the velocity distribution is unlikely to
be extremely anisotropic near the disc edge and that this dispersion
is set by the planet and the distance to the disc edge. Therefore we
expect that l ∼ h z . Equation (7) implies that in order for a planet to
open a gap in a low-opacity disc it must be massive and eccentric
enough that the removal time-scale in the chaos zone exceeds the
collision time-scale.

Previous works estimating ejection time-scales in the corotation
region have primarily concentrated on more massive mass ratios than
µ = 10−4 (David et al. 2003; Mudryk & Wu 2006). Consequently
we have estimated this time-scale from numerical integrations. 100
particles were integrated in the plane with initial eccentricities and
longitudes of periastron identical to those of the planet, random
mean anomalies and differing initial semi-major axes. Particles were
removed from the integration when their eccentricity was larger than
0.5. Fig. 2 shows this removal time-scale as a function of semi-major
axis for planet mass ratios µ = 10−4, 2 × 10−5 and eccentricity ep =
0.1. Fig. 2 shows that the removal time-scale in the chaotic zone for
µ = 10−4 is similar to or below the estimated collision time-scale
for Fomalhaut, 103 orbits, whereas the removal time-scale is longer
than than this time for µ ∼ 2 × 10−5. In Section 4 we estimated that
the planet mass must be lower than 7 × 10−5. Here we find that if
the planet mass is below µ ∼ 2 × 10−5 then the chaotic zone would
not be able to open a gap in Fomalhaut’s particle disc.

The diffusion equation (equation 6) neglects any dependence of
the diffusion coefficient or removal time on particle radius or ec-
centricity. We also have not considered the role of a particle size
distribution and destructive collisions. The low scaleheight implied
by the sharp edge suggests that fewer collisions are destructive than
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Figure 2. Removal time-scale as a function of initial semi-major axis for
a planet mass µ = 10−4 (large points) and µ = 2 × 10−5 (small points).
Particles were removed from the integration when their eccentricity became
larger than 0.5. Squares, triangles and circles show the time-scale when
fewer than 75, 50 and 25 per cent of the particles remained in the integration,
respectively. For an initial semi-major axis above or equal to 1.13, particles
were not removed in less than 105 orbital periods (shown as the arrow on the
upper right) for µ = 10−4 and for semi-major axis above or equal to 1.09 in
less than 2 × 105 orbital periods for µ = 2 × 10−5 (shown as the arrow on
the top middle). The horizontal line shows the limit set from the collision
time-scale, 103 orbits, estimated from Fomalhaut’s disc opacity. To account
for the absence of dust within the ring edge, particle lifetimes within the
chaotic zone must be shorter than the collision time-scale.

previously estimated (e.g. by Wyatt & Dent 2002). A more sophis-
ticated model is needed to predict more accurately the edge profile
as a function of planet mass, eccentricity, collision time-scale and
particle size.

6 S U M M A RY A N D D I S C U S S I O N

We find that a planet accounting for both the eccentricity and edge of
Fomalhaut’s disc is likely to have eccentricity similar to that of the
disc edge or ep ∼ 0.1. Here we have assumed that the eccentricity of
the ring is a forced eccentricity due to the planet. The sharp disc edge
limits the free eccentricities in the ring edge, so the ring eccentricity
equals the forced eccentricity. For a planet close enough to truncate
the ring, the forced eccentricity is approximately the same as the
planet eccentricity.

For high opacity or collisional discs (τ ∼ 1), a gap is only formed
if the planet-driven spiral density waves can overcome the torque
from accretion. A planet just large enough to open a gap will open
one approximately twice the size of its Hill radius. However, a col-
lisionless disc can open a larger gap, the size of the chaos zone
in the corotation region of the planet. We find that spiral density
waves can only be driven into a disc within a chaotic zone if the disc
opacity is of the order of 1. Fomalhaut’s disc opacity, τ ∼ 1.6 ×
10−3 (Marsh et al. 2005), is sufficiently low that spiral density waves
cannot be driven near the planet. For low-opacity discs, τ ! 0.1, a
planet will open a gap to the chaos zone boundary only if the col-
lision time-scale exceeds the time-scale for removal of particles
within the chaos zone. We use this limit and numerical integrations
to infer that a mass of a planet sufficiently large to account for the
sharp edge in Fomalhaut’s disc edge has mass ratio µ " 2 × 10−5.

The planet mass can be estimated from the observed slope in the
disc edge by assuming that the ring edge is located at the edge of the
chaos zone of the planet and the velocity dispersion at the ring edge
is set by resonant perturbations caused by the planet. If the velocity
dispersion estimated at the ring edge is due to perturbations caused
by bodies in the ring then the planet mass must be lower than this
estimate. This limits the planet mass ratio; µ ! 7 × 10−5.

Our exploration suggests that there is a planet located just interior
to Fomalhaut’s ring with semi-major axis ∼119 au, mass ratio 2 ×
10−5 ! µ ! 7 × 10−5 (corresponding to between a Neptune and
Saturn mass), and longitude of periastron and eccentricity, ep ∼
0.1, the same as that of the ring edge. Arguments similar to those
explored here could be used to estimate the masses of bodies residing
in and causing structure in other low-opacity discs.

A Saturn mass at 119 au may seem extreme compared to the
properties of our Solar system (Neptune at 30 au). It is desirable to
place this predicted planet mass in context with the estimated mass
of Fomalhaut’s disc. The total mass required to replenish the dust
in the disc was estimated by Wyatt & Dent (2002) to be 20–30 M ⊕,
however a larger mass is probably required as the velocity dispersion
assumed by this study corresponded to h/r ∼ 0.1 and this value
exceeds by a factor of 8 that consistent with the edge slope measured
by Kalas et al. (2005); h/r ∼ 0.013. A power-law size distribution
with an upper cut-off of 500 km leads to an estimate of 50–100 Earth
masses in the ring (Kalas et al. 2005). These estimates suggest that
there is sufficient material currently present in Fomalhaut’s disc to
form another Saturn- or Neptune-sized object.
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