"The Planets"

Astro/EPS C12 (CCN 17045 or 32505)

Dr. Michael H. Wong

Astronomy Department University of California at Berkeley mikewong@astro.berkeley.edu astro.berkeley.edu/~mikewong/C12.html

LEC: 2 LeConte TWTh, 2:40-5:00pm Office Hours: 419 Campbell Hall, Mon 3-4 and Tue 5-6

CORRECTIONS = (

• PS2: $F = F_0 (r_0/r)^2$, and $r_0 = 1 AU$.

TECHNICAL SUPPLEMENT

- page 12: change π to π^2
- page 13: destroy v_{esc} formula, replace with this one:
- page 16: change m_{μ} (mass of hydrogen) to $m_{\rm II}$ (atomic mass unit $= 1.66 \times 10^{-27} \text{ kg}$

$$v_{\rm esc.} = \sqrt{2 g r} = \sqrt{\frac{2Gm_{\rm planet}}{r}}$$

FACE GUARD Helmet button discon-

to a player in distress.

nects the cage, enabling easy access

PS1: question 2C

bonate on the outside, soft silicone

layer inside. Houses the pulley for the

The majority of hits land in front, but

most concussion-inflicting knocks

make contact at the sides

FACE QUARD "We left it the same.

Ferrara says, "We didn't want to

ORIGIN OF SOLID PLANET **ATMOSPHERES**

light gases (H & He)

would have rapidly

escaped

composed of

PRIMARY ATMOSPHERE

- whatever gases available at time of formation
 - hydrogen - helium
 - methane (CH₄)
 - ammonia (NH₂)
 - water (H₂0)

ORIGIN OF SOLID PLANET **ATMOSPHERES**

SECONDARY ATMOSPHERE

- produced by outgassing
 - gases released from melts in the interior
 - volcanically introduced - water (H₂0)
- sulfur dioxide (SO₂)
- carbon dioxide (CO₂) - nitrogen compounds

- also delivered by impacts of asteroids and comets
 - mainly water - impacts also REMOVE
 - atmosphere
 - interactions with surface

ORIGIN OF GIANT PLANET ATMOSPHERES

- core formed first
- direct gas capture, so
- giant planets are mostly hydrogen and helium
- further enrichment by accreting solid planetesimals

MAINTAINING AN **ATMOSPHERE**

- gases gravitationally bound to a planet make
 - up the atmosphere
- massive planets have stronger gravity and can
- maintain an atmosphere individual molecules in
- a gas are moving fast and colliding

- $E = 1/2 m v^2$
- hot molecules move faster than cold ones (if all are equally massive) light molecules move faster than heavy ones

(if all are at the same

temperature)

MAINTAINING AN ATMOSPHERE

8RT

20

10

0.2

0.1

1000

one-sixth escape speed/km s⁻¹

 $v_{\rm esc.} = \sqrt{2 g r} =$

$$\sqrt{rac{8RT}{\pi\mu M_{
m u}}}$$

Venus

200

temperature / K

100

Jupiter

Mars

400

Moon

Saturn

Neptune Uranus

Earth

800

 \overline{v} = average thermal velocity of a molecule if $6 \overline{v} > v_{\rm esc'}$

then the

atmosphere is escaping the planet !!

planet

 $V_{\rm esc} = {\rm escape}$ velocity from

ATMOSPHERIC ESCAPE helium carbon dioxide

50

MOLECULAR SPEEDS

THIN ATMOSPHERES

- Mercury and the Moon, the smallest of the terrestrial planets, have only trace atmospheres
- gas atoms rarely collide with each other but can interact with surface

- sodium emission shown here, observed using a coronagraph
- Moon's atmosphere must be continually replenished:
 - solar wind implantation

- outgassing

micrometeorite impacts

......

10

- red: oxygen emission
- blue: SO₂ emission
- source of Io's tenuous atmosphere: volcanoes

G481 2008-07-22 18

I(0)

- crescent illuminated by Jupitershine
- bright spot: scattering off volcanic plume
- gases from Io escape into space around Jupiter
- yellow glow: sunlight scattered by sodium atoms

JUPITER'S ICY MOONS

- trace gases (including sodium, CO2) have been found at the other Galilean satellites
- source: sputtering
- sputtering is when atoms/molecules get ejected from impacts by high-speed ions

TRITON AND PLUTO

- Triton: dark geyser plume deposits
- Triton and Pluto have solid N₂, CH,, CO, CO,
- atmospheres should have gas forms of these ices

ATMOSPHERIC COMPOSITION

Venus

SO 02 H₂O (variable) O_2 CO2 N2 CO2

Earth

© The Open Universi

THICK ATMOSPHERES

	Earth	Venus	Mars	Titan	
CO ₂	0.03%	96%	95%	~0	
N ₂	78%	4%	3%	95-99%	
02	21%	<1%	<1%	~0	
H ₂ O	yes	no	yes	(solid)	
CH ₄	<1%	<1%	~0	1-5%	
Total					
Pressure:	1 bar	90 bar	7 mbar	1.6 bar	

G481 2008-07-22

TERRESTRIAL PLANET ATMOSPHERIC COMPOSITIONS

Mercury		Venus ^a		Earth		Mars	
Gas	Volume ratio ^b	Gas	Volume ratio ^b	Gas	Volume ratio ^b	Gas	Volume ratio
O ₂	0.42	CO ₂	0.965	N ₂	0.781	CO ₂	0.953
Na	0.29	N_2	3.5×10^{-2}	O_2	0.209	N_2	2.7×10^{-2}
H_2	0.22	SO_2	1.5×10^{-4}	H_2O^c	<0.04	Ar	1.6×10^{-2}
He	0.06	H ₂ O	1×10^{-4}	Ar	9.3×10^{-3}	O_2	1.3×10^{-3}
K	5×10^{-3}	Ar	7×10^{-5}	CO_2	3.4×10^{-4}	co	7×10^{-4}
		H ₂	<2.5 × 10 ⁻⁵	Ne	1.8×10^{-5}	H_2O	3×10^{-4}
		CO	2 × 10-5				

Mars

PHASES OF MATTER

- SOLID -- resists forces against it (like compression); atoms/ molecules fixed with respect to each other
- LIQUID -- has no independent shape; not very compressible; atoms/molecules can move, but are packed tightly just like in solids
- GAS or VAPOR -can compress or expand; atoms/ molecules can move

PHASE TRANSITIONS

These transitions consume heat:

- VAPORIZE, BOIL -- go from liquid to gas
 SUBLIMATE -- go from
- solid to gasMELT -- go from solid to liquid

These transitions release heat:

- FREEZE -- go from liquid to solid
 CONDENSE -- go from
- gas to liquid

 DEPOSIT -- go from
- gas to solid

G481 2008-07-22 27

AN EXPERIMENTAL BOX

- amount of gas-phase H₂O (A.K.A. water vapor) depends on temperature and pressure in the box
 - "partial pressure" is the amount of the total pressure due to just water vapor

SATURATION VAPOR external pressure PRESSURE CURVE water vapour and non-interacting gas 10^{2} liquid + gas partial pressure/bar 10^{-2} 10^{-4} H,0 solid + gasgas only 10^{-6} 100 200 300 400 500 600 700 T/K 008-07-22 29

• Cassini image

7-22 43