"The Planets" Astro/EPS C12 (CCN 17045 or 32505)

Dr. Michael H. Wong

Astronomy Department
University of California at Berkeley
mikewong@astro.berkeley.edu
astro.berkeley.edu/~mikewong/C12.html

LEC: 2 LeConte TWTh, 2:40-5:00pm Office Hours: 419 Campbell Hall, Mon 3-4 and Tue 5-6

G481 2008-08-06

STAR PARTY

- 10PM TUES 12 AUG
- attendance optional (this is just for fun)
- meet at 10pm in front of Campbell Hall
- don't be late
- my cell 510-207-2236
- may be cancelled if weather is bad

81 2008-08-06

1 2008-08-00

QUIZ 2

tomorrow

- 1 double-sided sheet of notes
- comprehensive
 (covers the entire
 course) but weighted
 more toward material
 not yet tested

G481 2008-08-06

G481 2008-08-06

ASTROBIOLOGY

- the study of life in the Universe
- it is a relatively new, interdisciplinary science
 - biology
 - geologyastronomy
 - chemistry
 - physics

- just like planetary science was a new interdisciplinary science
 - geology
 - astronomy
 - chemistry
 - physics

G481 200

RAW MATERIALS FOR LIFE

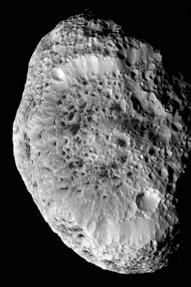
- terrestrial life is based on amino acids
 - compounds of C, H, N, O
 - building blocks of proteins
 - experiments mimicking early conditions have created amino acids

TERR

TERRESTRIAL LIFE

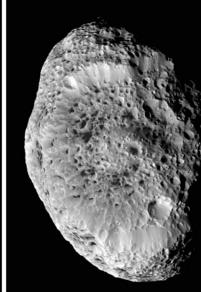
• Khare, Sagan

(pictured), Miller, and

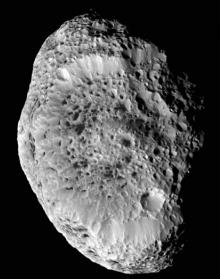

Urey created amino

acids out of gases

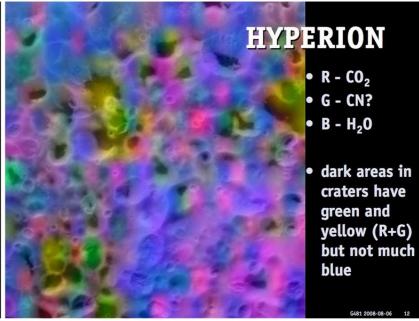
- simulating planetary atmospheres • so far life is known only on Earth
- so we expect to find life in Earth-like places
- but chemical building blocks of life may be


common elsewhere...

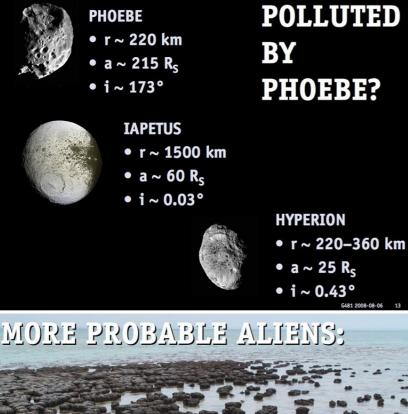
668


ORGANIC MOLECULES

- organic means "containing C + H"
- complex organics common in interstellar dust, planetary nebulae...
- destroyed when material was heated and collapsed into protosolar disk


ORGANIC MOLECULES

- but complex organics common in comets, meteorites, interplanetary dust...
- are they easy to form?
- · can be made using energy from electrical discharge, UV radiation, ion chemistry


HYPERION

- "regular" Saturnian satellite
- bright areas have water ice
- dark areas have organic material

G - CN? B - H₂0

dark areas in craters have green and yellow (R+G)

PHOEBE

PHOEBE retrograde... captured **KBO?**

IAPETUS

OLDEST FOSSILS

BY PHOEBE?

dark material on

leading side

HYPERION • dark material inside craters

POLLUTED

stromatolites ck formations created by coloni microscopic o

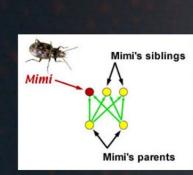
- layers of sediment trapped in cyanobacteria colony mucous, eventually
- creating rock • oldest are ~3.5 billion years old

MORE PROBABLE ALIENS:

BIOLOGICAL CLASSIFICATION

• the "old way" is based on developed in the physical characteristics of 1700s by Carolus the organism Linnaeus

Example classification: humans

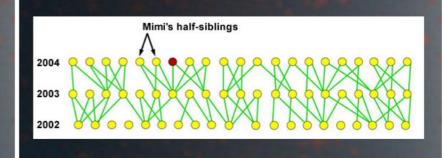

As an example, consider the Linnaean classification for modern humans:

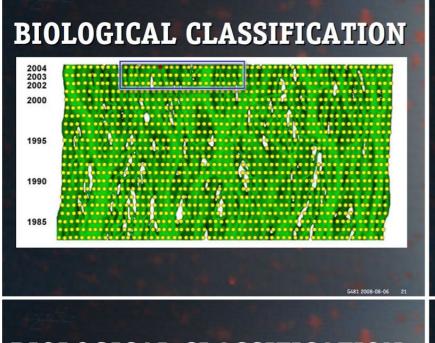
- Kingdom: Animalia (all animals, which are heterotrophs)
- Phylum: Chordata (all animals with a notochord)
- Subphylum: Vertebrata (all vertebrates, i.e., with a spinal column) Class: Mammalia (all vertebrates whose females secrete milk to nourish young)
- Subclass: Placentalia (Eutheria) (mammals who are nourished in utero through a placenta) Order: Primates (mammals with five opposable digits, binocular vision, and large brains)
- Family: Hominidae (all hominids, current and ancestral)

Subspecies: Homo sapiens sapiens

- Genus: Homo (upright primates; 'man')
- Species: Homo sapiens (humanity; 'wise man')

BIOLOGICAL CLASSIFICATION

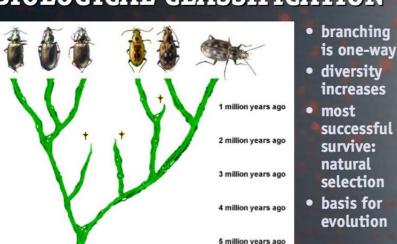



- newer schemes are based on genetic relationships
 - all life on Earth is related
 - these images are from tolweb.org (tree of life site)

beetle

• example: Mimi the

BIOLOGICAL CLASSIFICATION

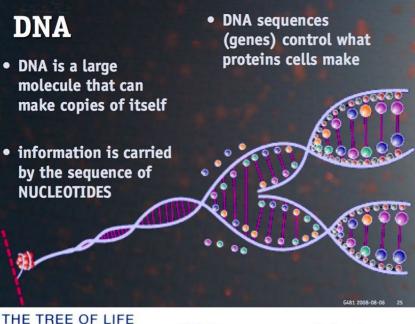


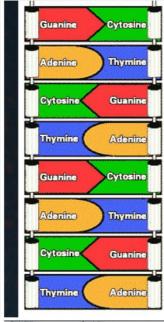
Sembidion levettei Bembidion zephyrum 1 million years ago 2 million years ago 4 two "species" are so different that they can't interbreed • both descended from a common ancestor

BIOLOGICAL CLASSIFICATION

BIOLOGICAL CLASSIFICATION

BIOLOGICAL CLASSIFICATION • all life can

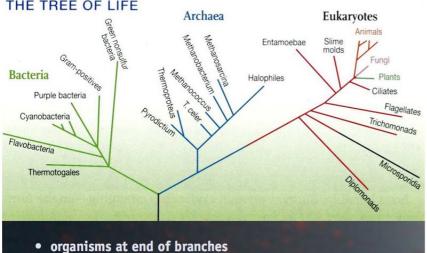



 all life can be traced this way
 some rare exceptions to one-way

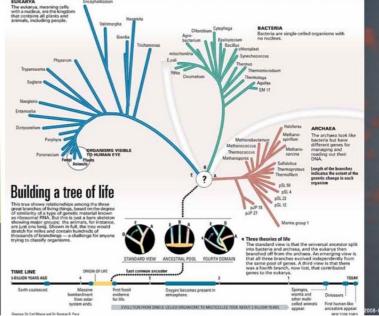
branching,

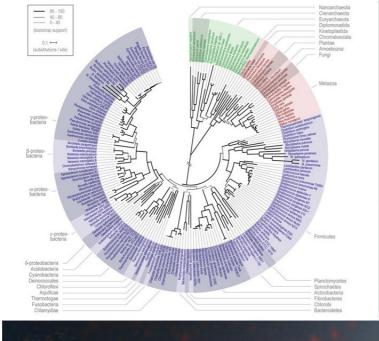
mitochondria

like



DNA/RNA


- the DNA "alphabet" includes only 4 nucleotides
- each nucleotide only fits together with is matching nucleotide
 - cytosine fits with guaninethymine fits with adenine
- RNA is similar but has uracil instead of thymine


G481 2008-08-06 26

distance between branches corresponds to

genetic difference

DEFINITION OF LIFE

- reproduction
- metabolism
- ability to evolve
- but no firm definition can be made since there are always exceptions

REQUIREMENTS FOR LIFE

LIQUID WATER

 base for the chemical reactions of life


NUTRIENTS

- carbon
- nitrogen etc.
- to build proteins

ENERGY (food)

- sunlight
 - plants
 - photosynthesis
- chemical
 - we use oxygen
 - some microbes use metals
 - some METHANOGEN microbes use H2 + CO2 to make methane + water

EXTREMOPHILES

- deep-sea vent methanogen bacteria
- it is difficult or impossible to find an area on Earth with no life
- prokaryotes (microbes with no cell nuclei) are the largest biomass
- in your body they outnumber your own cells 10 to 1

THE DEEP OCEAN

- this fish still relies on (indirect) solar energy
- anaerobes (living without oxygen) populate seafloor vents
- superheated water temperatures can be ~120°C

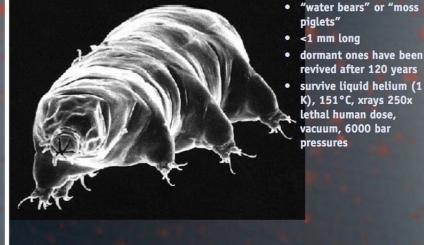
G481 2008-08-06 33

ACID, SALT

- organisms found "eating metal" in pure acid environments in abandoned mines
- halobacteria live in extremely salty environments

G481 2008-08-06

DEEP UNDERGROUND


- halobacteria have been revived from salt crystals underground in mines for 100s of thousands of years
- methanogen bacteria are found living kms below the surface

G481 2008-08-06

- 3.6 km deep ice core
- ice core yields climate data going back 400,000 years
- bacteria function at temperatures of -12°C to -17°C

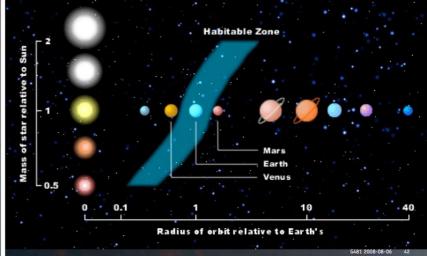
TARDIGRADE

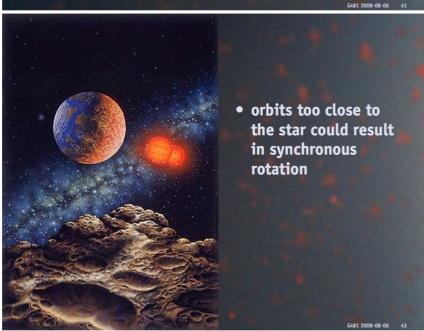
G481 2008-08-06 38

PANDAGRADE



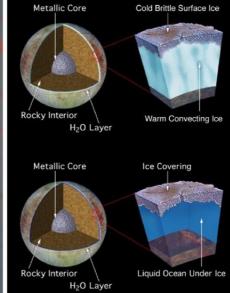
ECOSPHERES


- places where life might exist
 - might exist – habitable zones
 - around stars
 habitable pockets
- requirements for life satisfied
 - liquid water
 - nutrients
 - energy


39 6481 2008-08-06

THE HABITABLE ZONE

THE HABITABLE ZONE


 a habitable planet might have orbit A or B

 orbit C would probably not be stable, so not good for life

• planet HD 188753 Ab is in a triple star system • periods: - planet: 3.3 days - stars B and C around A: 26 years - stars B and C around each other: 156 days

- Jupiter system is too far from the Sun to be in the habitable zone
- tidal forces on the Galilean satellites heat their interiors; some can maintain LIQUID water inside
- Enceladus, Titan, other icy bodies may provide more habitable pockets

EUROPA

 ice crust thickness unknown, 5-20 km

EUROPA

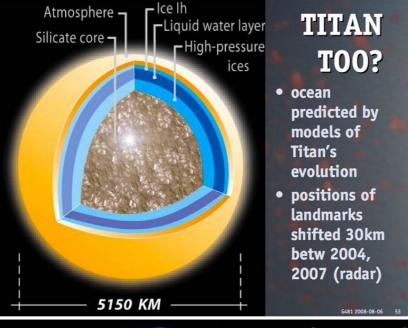
GANYMEDE

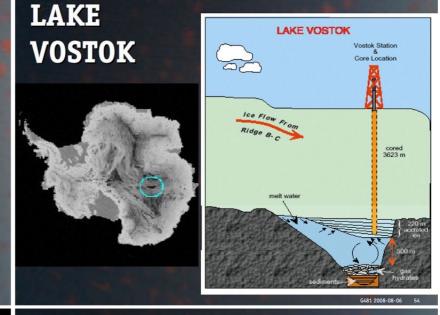
- ice crust ~100 km thick
- larger ocean than Europa, but sandwiched between ice layers
- only Europa likely to have a water-rock interface
- (indirect evidence for ocean beneath Callisto's surface also)

G481 2008-08-06 50

481 2008-08-06

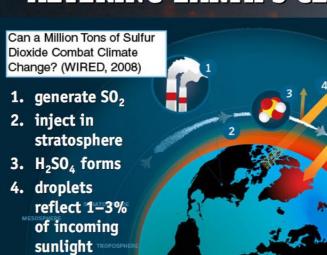
HEATING PLANETARY INTERIORS

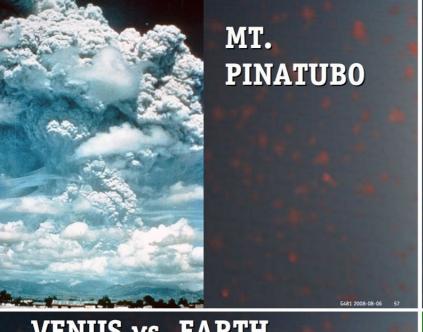

- gravitational energy from formation
 - impacts
 - differentiation
- tidal heating

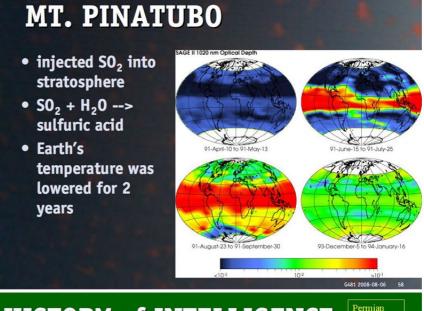

- nuclear energy
 - radioactive decay (fission, not fusion)
 - uranium, thorium, potassium
 - aluminum-26 was important for some asteroids

ENCELADUS

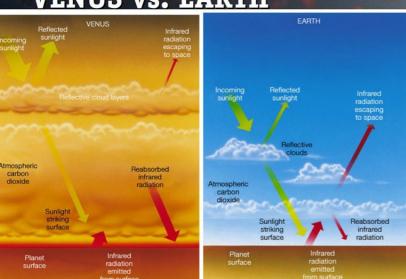
where is the water coming from?

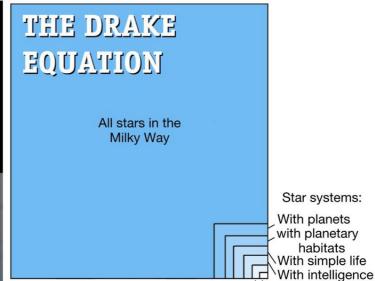




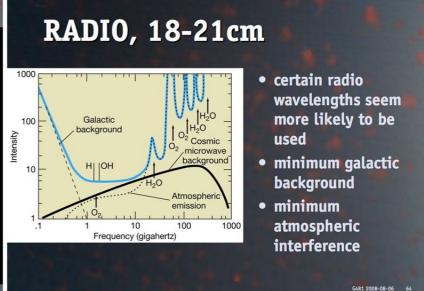

TERRAFORMING MARS • terraforming = making it earthlike • ethical issues

Model by Chris Wayan 2004

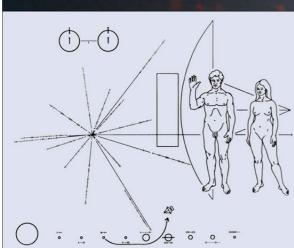

ALTERING EARTH'S CLIMATE


<u>VENUS vs. EARTH</u>

HISTORY of INTELLIGENCE

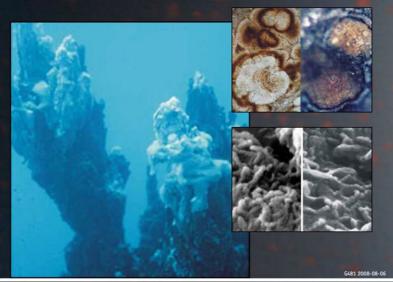


The Drake Equation $N = R * f_p n_e f_l f_i f_c L$ f, = The fraction of suitable planets on which life N = The number of civilizations in The Milky Way actually appears. Galaxy whose radio emissions are detectable f = The fraction of life bearing planets on which R* = The rate of formation of stars suitable for the intelligent life emerges. development of intelligent life. f = The fraction of civilizations that develop a $f_p =$ The fraction of those stars with planetary technology that releases detectable signs of their existence into space. n = The number of planets, per solar system, with an L = The length of time such civilizations release environment suitable for life. detectable signals into space. number of detectable intelligent civilizations in the galaxy depends on several necessary factors G481 2008-08-06 61 **SETIs** Version 1.0



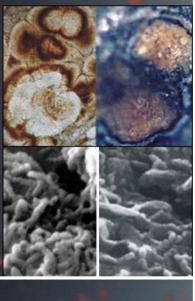
With technical society / With long-lasting technology/

INTENTIONAL ARE THEY WATCHING TV? BROADCAST • radio & TV broadcasts for 70 years • signals would have reached stars 70 light-years away PIONEER 11 PLAQUE MARS METEORITE ALH84001


AL H8400L0

- billion year old features
- carbonates

rock contains 3.6-


- formed in the presence of water
- "nano-bodies"
 - possible microfossils?

LAKE VAN vs. ALH84001

LAKE VAN vs. ALH84001

- Earth features on left, Mars features on right
- cyanobacteria grow in calcium-rich Lake Van in Turkey
- structures may be too small to be fossil organisms
- unknown if they are from biological or mineral processes

CHEMICAL "BIOMARKERS"

- Viking Mars mission baked soil and searched for organic molecules
- Phoenix lander currently doing chemistry experiments
- CH4 (methane) on Mars/Titan is not stable over long timescales; what is the source?
- other advanced chemical signs may work: isotopic signatures, chirality

CHEMICAL "BIOMARKERS"

 MSL in 2010 is planned to do the search again with **improved** technology

