
Redshift Space Distortions
Overview

It is important to realize that our “third dimension” in cos-
mology is not radial distance but redshift. The two are related
by the Hubble expansion but also affected by peculiar velocities.
On small scales random motions within e.g. a cluster of galaxies
will cause particles at the same distance to have slightly differ-
ent redshifts. This elongates structures along the line of sight
and leads to the so-called fingers-of-God effect: structures have
a tendency to point toward the observer. On very large scales
the opposite happens. Objects fall in towards overdense regions.
This makes objects between us and the overdensity appear to
be further away and objects on the other side of the overden-
sity appear closer. The net effect is to enhance the overdensity
rather than smear it out. These effects are known as redshift
space distortions – you can find a review in astro-ph/9708102
(specifically §§1, 2 5 & 6).

Contour plot of ξ(r⊥, r||) in r-space forms a butterly plot, and
a sharpening of any feature along the line of sight. In k space
the sense is reversed.

Galaxies are expected to be almost unbiased tracers of the
cosmic velocity field, so a measurement of redshift space dis-
tortions allows a measure of the mass density field (through its
relation to the velocity field) and hence of the growth of struc-
ture. Note: unlike lensing, which depends on both Φ and Ψ,
the velocity field of non-relativistic tracers depends only on Ψ.
The combination allows constraints on gravity theories.

The Kaiser factor

The former effect is fairly difficult to calculate, but the latter
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is a simple exercise in linear perturbation theory. You may wish
to look at Nick Kaiser’s original paper on this subject (MNRAS,
227, 1, 1987). Denote the redshift space coordinate as ~s and the
real space coordinate as ~r. If ~v(~r) is the peculiar velocity in
units of the Hubble constant then

~s = ~r

(
1 +

u(r)

r

)
(1)

where u = r̂ · ~v(~r) and we have assumed v(0) = 0. Assuming
that the object is so distant1 that kr � 1 the Jacobian between
~s and ~r is

d3s =

(
1 +

du

dr

)
d3r (2)

where we have dropped the (1 + u/r)2 factor. Number density
conservation requires δsd

3s = δrd
3r for plane-wave perturbation

δ. Using the linear theory relation δ̇ = −ikv we have

du

dr
= µ

d

dr
v (3)

= µ(ikµ)v (4)

= −µ2(−ikv) (5)

= −µ2f(Ω)δ (6)

where µ = r̂ · k̂ and f(Ω) ≡ d log δ/d log a ≈ Ω0.6 so δ̇ = f(Ω)δ
in units where H = 1. Putting it all together we have

δs = δr
(
1 + fµ2

)
(7)

If we presume that the galaxy fluctuation is biased with respect
to the mass by δgal = bδmass then

∆2
gal(k, µ) = b2

(
1 + βµ2

)2
∆2

mass(k) (8)

1This is not a good approximation for wide-angle surveys, see Papai & Szapudi
0802.2940 or Castorina & White 1709.09730 for more details. In fact, once you go be-
yond plane-parallel you lose the translational symmetry of the problem that allows us to
simply sum up independent k-modes here. This problem tends to be small in practice.
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where β ≡ f(Ω)/b. Note that β is not really a cosmological
parameter like Ω as it is only defined in the context of the most
simple linear biasing model (which is almost certainly wrong).
However it is often referred to by people who study velocity
fields because f(Ω)/b relates the velocity field to the density
field in this linear bias model. (Non-linear models exist, Willick
gives a review and people are revisiting these for density field
reconstruction for BAO).

The µ dependence of ∆2
gal(k, µ) can be expanded out in Leg-

endre polynomials of order 0, 2, 4. The coefficient of P0 is
1 + 2

3β + 1
5β

2 which is the amount by which clustering is en-
hanced on large-scales by redshift space distortions2. Notice
that for Ω ∼ b ∼ 1 this can by a significant effect! In Fourier
space:

∆2
red(k, µ)

∆2
real(k)

=

[(
1 +

2

3
β +

1

5
β2

)
P0(µ) (9)

+

(
4

3
β +

4

7
β2

)
P2(µ) (10)

+
8

35
β2P4(µ)

]
(11)

For quite some time it was believed that the ratio of the quadrupole
to monopole term would be a good way to measure β – see
Berlind, Narayanan & Weinberg (2001; ApJ 549, 688) for a sum-
mary of past work and a discussion of issues with this approach.

Numerous numerical simulations have shown that the con-
vergence to the Kaiser factor is very slow – we can understand
some of this from PT as discussed below. Thus for precision cos-

2Note sign of elongation changes between k and r picture. In configuration space an
overdensity generates a convergent flow, “sharpening” the structure so ξ(r||) falls more
quickly than without redshift distortions.
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mology the Kaiser effect represents a limit which is never valid
for real surveys.

The correlation function

It is straightforward to derive the correlation function(s) cor-
responding to the Kaiser power spectrum. Define

∆2(k, k̂ · ẑ) =
∑
`

∆2
`(k)P`(µ) and ξ(r, r̂ · ẑ) =

∑
`

ξ`(r)P`(µ)

(12)
then the Rayleigh expansion of the plane wave gives

ξ`(r) = i`
∫
dk

k
∆2
`(k)j`(kr) (13)

If we use the recurrence relations between the j`s we can write
the ξ` in terms of integrals of ξ times powers of r, e.g.∫

dk

k
∆2
`(k)j2(kr) =

3

s3

∫ s

0

s2ds ξ(s)− ξ(s) = ξ̄(< s)− ξ(s)

(14)

Beyond plane-parallel

In deriving Eq. (8) we assumed the distant observer approx-
imation. This is not necessary. In moving to wide fields it
makes sense to make a radial-angular decomposition, since red-
shift space distortions involve only radial remapping. Thus one
expands (Heavens & Taylor, 1995)

ρ`mn(s) = c`n

∫
d3s ρ(~s)j`(k`ns)Y

∗
`m(θ, φ) (15)

where j` are the spherical Bessel functions and Y`m the spheri-
cal harmonics. If there is no boundary condition at finite r the
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Figure 1: The assumed geometry and angles. The two galaxies lie at ~s1 and
~s2, with separation vector ~s = ~s1−~s2 and enclosed angle θ. We take the line
of sight to be parallel to the angle bisector, ~d, which divides ~s into parts of
lengths st and s(1− t). The separation vector, ~s, makes an angle φ with the
line of sight direction, d̂.

sum over n is an integral over k, otherwise the boundary con-
dition must be applied. Redshift space distortions then become
relations between the ρ`mn. For example

j` (k`ns) ' j` (k`nr) + v(r)
d

dr
j` (k`nr) + · · · (16)

and the derivative can be written, using recurrence relations, in
terms of the j`+1 and j`−1.

If one is going to drop the distant observer approximation,
one also needs to worry about the fxjvj/x

2 term – see Papai &
Szapudi (2008; MNRAS 389, 292).
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Keeping to linear theory we begin with the redshift space
density field

δ(s) =

∫
d3k

(2π)3
eik·x

[
1 + f(k · x)2 − 2if

k̂ · x̂
kx

]
δ(k) (17)

so that

〈δ(x1)δ
?(x2)〉 =

∫
d3k

(2π)3
P (k)eik·(x1−x2)[

1 +
f

3
+

2f

3
P2(k̂ · x̂1)− 2if

P1(k̂ · x̂1)

kx1

]
[

1 +
f

3
+

2f

3
P2(k̂ · x̂2)− 2if

P1(k̂ · x̂2)

kx2

]
(18)

We can expand ξ in terms of

S`1`2`(x̂1, x̂2, x̂) =
∑

m1,m2,m

(
`1 `2 `

m1 m2 m

)
C`1m1

(x̂1)C`2m2
(x̂2)C`m(x̂)

(19)
where C`m =

√
4π/(2`+ 1)Y`m and use the identities

P`(x̂1 · x̂2) =
4π

2`+ 1

∑
m

Y`m(x̂1)Y
?
`m(x̂2) (20)

eik·x = 4π
∑
`m

i`j`(kx)Y`m(k̂)Y ?
`m(x̂) (21)

and the Gaunt integral∫
dΩ Y`1m1

(n̂)Y`2m2
(n̂)Y`3m3

(n̂) ∝
(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
(22)
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to find expressions for the expansion coefficients B`1`2` in terms
of β and ξ`. In the limit x̂1 ≈ x̂2 we can use

S`1`2`(x̂1, x̂1, x̂) =

(
`1 `2 `3

0 0 0

)
P`(x̂1 · x̂) (23)

More general expressions can be found in Papai & Szapudi.
Derivation of plane-parallel limit: Expand S`1`2`(x̂1, x̂1, x̂) in
Legendre polynomials, A`P`(x̂1 · x̂). Write P`(x̂1 · x̂) as a sum of
Y`m(x̂1)Y`m(x̂) and hence get an expression for A`m. Using the
definition of S the A`mY`m(x̂1) is 3j-symbols times a product
Y`1m1

(x̂1)Y`2m2
(x̂1). Integrate this against Y`m(x̂1) to get A`m as

the 3j symbol times the integral of a product of the three Y`ms
all of argument x̂1. The integral is(

`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
(24)

Now use the identity

(2`+ 1)
∑
m1m2

(
`1 `2 `

m1 m2 m

)(
`1 `2 `′

m1 m2 m′

)
= δ``′δmm′ (25)

to get the result above.

Explicit wide-angle expressions in linear theory

The linear theory correlation function for arbitrary triangles
was derived by Szalay et al. (1998). We briefly recap how that
derivation proceeds here. To keep the derivation as short as
possible we only show some terms and in particular we omit the
fxjvj/x

2 terms. The other terms follow a similar pattern and
can be found in Szalay et al. (1998) if desired.
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Recall the redshift-space density in linear theory is (Kaiser
1987)

δ(s)(s) =

∫
d3k

(2π)3
eik·s

(
1 + β[k̂ · ŝ]2

)
δ(r)(k) (26)

If we define

δ` ≡
∫

d3k

(2π)3
L`(k̂ · ŝ)eik·sδ(k) (27)

then using µ2 = (2/3)L2(µ) + (1/3)L0(µ) we have

δ(s)(s) =

(
1 +

β

3

)
δ0 +

2β

3
δ2 (28)

The correlation function is thus

ξ(s1, s2) =

(
1 +

β

3

)2

〈δ0δ0〉+
4

9
β2 〈δ2δ2〉

+
2β

3

(
1 +

β

3

)
〈δ0δ2 + δ2δ0〉 (29)

To evaluate the expectation values we expand L and exp[ik · s]
in spherical harmonics and integrate over dΩk. For example〈

δ2
0

〉
=

∫
k2 dk

2π2
P (k)j0(ks) (30)

as expected while

〈δ0δ2 + δ2δ0〉 =− [L2(ŝ · ŝ1) + L2(ŝ · ŝ2)]∫
k2 dk

2π2
P (k)j2(ks) (31)

=−
[
2L2(µ) cos θ +

1

2
(1− cos θ)

]
∫
k2 dk

2π2
P (k)j2(ks) (32)
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and 〈
δ2

2

〉
=

∫
k2 dk

2π2
P (k)

∑
L

iLjL(ks)

(
4π

5

)2

×
∑

M,m1,m2

GMm1m2

L22 Y ?
LM(ŝ)Y ?

2m1
(ŝ1)Y

?
2m2

(ŝ2) (33)

where G is the Gaunt integral. To evaluate the last line, set d̂ to
be the ẑ-axis and orient the triangle to lie in the x− z plane (so
all of the polar angles are zero or π). Note that ŝ1 and ŝ2 are
both at angle θ/2 to d̂ while ŝ is at angle π−φ. Only 0 ≤ L ≤ 4
are non-zero and using the explicit forms of the Y`m then gives〈

δ2
2

〉
3 L2(cos θ)

5

∫
k2 dk

2π2
P (k)j0(ks) (34)

for the L = 0 contribution〈
δ2

2

〉
3 1

28
[1− 3 cos(2θ)

−3 cos(2φ− θ)− 3 cos(2φ+ θ)]

×
∫
k2 dk

2π2
P (k)j2(ks) (35)

for the L = 2 contribution and〈
δ2

2

〉
3 9

1120
[6 + 35 cos(4φ) + 3 cos(2θ)+

10 cos(2φ− θ) + 10 cos(2φ+ θ)]

×
∫
k2 dk

2π2
P (k)j4(ks) (36)

for L = 4. Note that in the limit θ → 0(
1 +

β

3

)2

+
4β2

45
L2(cos θ)→ 1 +

2

3
β +

1

5
β2 (37)
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and the L = 4 part of

4β2

9

〈
δ2

2

〉
→ 8β2

35
L4(µ)

∫
k2 dk

2π2
P (k)j4(ks) (38)

as desired. The other terms follow a similar pattern, and the
results3 can be found in Szalay et al. (1998; though beware that
their θ is half ours). It is easy to show that the corrections to
the plane-parallel limit start at O(θ2).

Beyond linear theory

Of course one can go beyond linear theory. Staying within
the plane-parallel approximation (so that we keep translational
invariance, so k-modes are the ‘right’ basis) and using number
density conservation we have

d3s ≡ J(x)d3x , J(x) = |1− f∇zvz(x)| (39)

so

1 + δs(s) =
1 + δ(x)

J(x)
(40)

The correlation function in redshift space can therefore be writ-
ten

1 + ξs (π, σ) =

∫
drdk

2π
e−ik(r−π)

〈
eifk(u−u′) [1 + δ] [1 + δ′]

〉
(41)

which we see involves all powers of the density and velocity cross
correlation.

3Note that Eq. (15) of Szalay et al. (1998) contains a typographical error. The 4/15
should be 8/15.
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If we expand the second exponential we have

δs(k) =
∞∑
n=1

∫
d3k1 · · · d3kn

(2π)3n
(2π)3δD(k − k1 − · · · − kn)

×
[
δ(k1) + fµ2

1θ(k1)
] (fµk)n−1

(n− 1)!

µ2

k2
θ(k2) · · ·

µn
kn
θ(kn)(42)

To first order we regain the Kaiser expression. Beyond linear
order we have

δs(k) =
∞∑
n=1

∫
d3k1 · · · d3knδD(k−k1−· · ·−kn)Zn(k1, · · · , kn)δ1(k1) · · · δ1(kn)

(43)
where Z1 = b1 + fµ2 and

Z2(k1, k2) = b1F2(k1, k2) + fµ2G2(k1, k2) +
b2

2

+
fµk

2

[
µ1

k1
(b1 + fµ2

2) +
µ2

k2
(b1 + fµ2

1)

]
(44)

and so on.
Another approach is to use Lagrangian perturbation theory.

Here we shall work to 1st order – the Zel’dovich approximation.
Particles initially at q are mapped to x = q + Ψ with Ψ =∑

Ψ(n) and Ψ(n) ∝ Dn. Going to redshift space means replacing
Ψ with

Ψ→ Ψ +
ẑ · Ψ̇
H

ẑ = RΨ (45)

and since Ψ(n) ∝ Dn we have R
(n)
ij = δij + nfẑiẑj. Taking the

Fourier transform of the sum of δ-functions:

δ(x) =

∫
d3q δ(D)(x− q−Ψ)− 1 (46)

δ(k) =

∫
d3q e−ik·q

(
e−ik·Ψ(q) − 1

)
(47)
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which gives

P (k) =

∫
d3q e−ik·q

(〈
e−iki∆Ψi(q)

〉
− 1
)
, (48)

where q = q1−q2, and ∆Ψ = Ψ(q1)−Ψ(q2). For a zero-mean
Gaussian x we have 〈ex〉 = exp

[
〈x2〉/2

]
so to 1st order

P (k) =

∫
d3q e−ik·q exp

[
−1

2
kikj {ξij(0)− ξij(q)}

]
(49)

where ξij(q) ≡ 〈Ψi(q1)Ψj(q2)〉. Leave the zero-lag piece expo-
nentiated and expand the exponential of ξij(q). Using

kikjRiaRjbδab = (ka + fkµẑa) (ka + fkµẑa) = k2
[
1 + f(f + 2)µ2

]
(50)

and that the Fourier transform of ξ is PL we have

P (k) = exp
[
−
{

1 + f(f + 2)µ2
}
k2Σ2/2

] (
1 + fµ2

)2
PL(k) + · · ·

(51)
with

Σ2 =
1

3π2

∫
dp PL(p) ' O

[
(10 Mpc)2

]
(52)

the displacement of particles in the Zel’dovich approximation.
Note that this means any approach to the Kaiser limit is only
accurate when kΣ� 1. Also note that including redshift space
distortions increases the damping in the line-of-sight direction
by (1 + f) compared to the transverse direction.

A discussion of the general effect of redshift space distortions
for Gaussian fields, but not assuming linearity, is given in Shaw
& Lewis (arxiv:0808.1724).

Fingers of God

12



To deal with small-scale velocities formally requires a model
for the velocity field and its correlations with density. This is
quite difficult. For the density we have the exact expression

δD(k) + δs(k) =

∫
d3x e−ik·xeifkzuz(x) [1 + δ(x)] (53)

where δD is a Dirac δ-function. The power spectrum is thus

δD(k) + Ps(k) =

∫
d3r e−ik·x

〈
eifkz∆uz(x) [1 + δ(x)] [1 + δ(x′)]

〉
(54)

where r = x−x′. Unfortunately this involves knowing all of the
density and velocity correlations. The similar formula for the
correlation function can be schemeatically written:

1 + ξs(s||, s⊥) =

∫
dr|| [1 + ξ(r)]P (r|| − s||, r) (55)

where P is the velocity distribution function which depends on
r. In general it is almost impossible to make rigorous progress
here. If we neglect this r dependence and assume isotropic ve-
locity dispersion we get the “streaming model” first introduced
by Peebles and used for many years: ξs is just a convolution of ξr
and a velocity PDF. In Fourier space the convolution is a multi-
plication so ∆2

s becomes ∆2
r times the FT of the velocity model,

usually a Gaussian or an exponential. This is an extremely sim-
ple, though not rigorously justified, model. For some further
developments, see Reid & White (2011; MNRAS, 417, 1913) or
Vlah et al. (2016; JCAP, 12, 007), Vlah & White (2019; JCAP,
03, 007)

Modeling the distortions

We saw above that frequently one uses a simplified model for
the redshift space distortions. For example you could multiply
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the Kaiser factor by a small-scale factor which is either a Gaus-
sian or an exponential. In Fourier space the latter leads to the
“dispersion model” (see for example Park et al. 1994 or Peacock
& Dodds, 1994, MNRAS 267, 1020)

∆2
red(k, µ) = ∆2(k)

(
1 + βµ2

)2

1 + k2µ2σ2
(56)

where β and σ are parameters to be fit to the data. (Sometimes
a model with [1+k2µ2σ2/2]2 is used – note that they agree at low
k.) Expressions for the moments can be found in Cole, Fisher
& Weinberg (1995; MNRAS, 275, 512). A generalization to the
halo model, and a description of why an exponential model is
better than a Gaussian, can be found in (MNRAS, 321, 1 (2001);
MNRAS 325, 1359 (2001)).

Beyond dispersion or streaming models one needs to turn to
numerical simulations. Some work in this direction has been
reported in e.g. Hatton & Cole (1999; MNRAS, 310, 113) who
find a fit to the quadrupole-to-monopole ratio Q = Qlin(1−x1.22)
where x = k/k1 and k1 is a free parameter akin to σ above.

Projected statistics

In principle, if we project our density field along the line-of-
sight direction we become immune to redshift space distortions.
However in practice we never project to infinite distance and
small effects can remain.

We follow Fisher et al. (1994) and define

1 + δ2(n̂) =

∫
dχ φ(s) [1 + δ3(χ, χn̂)] (57)

where φ is a weighting function which integrates to unity and
whose argument is the redshift space position, not the real space
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position. If peculiar velocities are small compared to the width
of φ we can write

φ(s) ' φ(χ) +
dφ

dχ
u (58)

Fourier transforming and using the Rayleigh expansion of a
plane wave we have two terms. The density piece looks like

δ2(n̂) =

∫
dχφ(χ)

∫
d3k

(2π)3
δ3(χ,k)

∞∑
`=0

i`(2`+ 1)j`(kχ)P`(k̂ · n̂)

(59)
with Legendre moment

δ` = i`
∫

d3k

(2π)3
δ3(k)W`(k)⇒ C` ≡ 〈δ`δ?` 〉 = 4π

∫
dk

k
∆2(k)W 2

` (k)

(60)
The velocity term is slightly more complicated

δ2(n̂) =

∫
dχ

dφ

dχ

∫
d3k

(2π)3
(−iβµ/k)δ3(χ,k)

∞∑
`=0

i`(2`+1)j`(kχ)P`(k̂·n̂)

(61)
Integrating by parts and putting the two terms together using
`j`−1 − (`+ 1)j`+1 = (2`+ 1)j′` one gets

W`(k) =

∫
dχφ(χ)j`(kχ) + β

∫
dχφ(χ)

[
2`2 + 2`− 1

(2`+ 3)(2`− 1)
j`

− `(`− 1)

(2`+ 1)(2`− 1)
j`−2 −

(`+ 2)(`+ 1)

(2`+ 1)(2`+ 3)
j`+2

]
(62)

The second term, proportional to β, is much smaller than the
former when ` � 1, but can be significant for narrow redshift
shells and small `. In general redshift space distortions enter
these expressions down by k∆χ compared to the real-space term
where ∆χ is the width of the “shell”.
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Light-cone effects

Some people include light-cone effects, the fact that we ob-
serve not a constant time slice but along the past light-cone, in
redshift space distortions. A nice discussion of the full light-cone
formalism in linear perturbation theory is given in Matsubara
(2000; ApJ, 535, 1).

The halo model

The halo model lends itself naturally to a RSD treatment,
since it conceptually separates the virial motions (1-halo) from
the supercluster infall (2-halo). The 2-halo term gets increases
by the usual Kaiser factor, and there is a suppression in the bias
integral:

P 2−halo →
(

1 +
2

3
f +

1

5
f 2

)
B2(k)P (k) (63)

where

B =

∫
f(ν)dν b(ν)R(kσ/2)y(k) (64)

while for the 1-halo term

P 1−halo → 1

(2π)3

∫
f(ν)dν b(ν)

M(ν)

ρ̄
R(kσ)y2(k;M) (65)

Here R ∝ erf is the integral of the assumed-Gaussian velocity
dispersion. We find the 1-halo term is suppressed relative to
the 2-halo term, making the power spectrum closer to linear in
redshift as opposed to real space. Note also that the suppres-
sion factor at high k is the integral of Gaussians over the mass
function, leading to a close-to-exponential profile (as observed).

Cosmological constraints
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Under the assumption that the density field has Gaussian
statistics and uncorrelated Fourier modes, the Fisher matrix for
a set of parameters {pi} is

Fij =
1

2

∫
d3k

(2π)3

(
∂ lnP

∂pi

)(
∂ lnP

∂pj

)
Veff

(
~k
)

(66)

where P is the power spectrum and the mode counting is deter-
mined by the effective volume

Veff

(
~k
)
≡ V0

(
n̄P

1 + n̄P

)2

(67)

which depends on the geometric volume of the survey, V0, and
the number density, n̄, of the tracer. If n̄ is high enough then
Veff ' V0. The constraints are dominated by regions where
n̄P ≥ 1, so it is safe to neglect the higher order (in n̄−1) terms
which arise assuming that galaxies are a Poisson sample of the
underlying density fluctuations.

The simplest model for the observed galaxy distribution is
a linear, deterministic, and scale-independent galaxy bias, with
redshift space distortions due to super-cluster infall and no ob-
servational non-idealities. In this case Pobs ∝

(
b+ fµ2

)2
Plin(k)

where Plin is the linear theory mass power spectrum in real space,
b is the bias and µ the angle to the line-of-sight. The quantity of
most interest here is f ≡ d lnD/d ln a, the logarithmic deriva-
tive of the linear growth rate, D(z), with respect to the scale
factor a = (1 + z)−1. In general relativity f ≈ Ωmat(z)0.6 while
in modified gravity models it can be smaller by tens of percent.
Redshift space distortions allow us to constrain f times the nor-
malization of the power spectrum (e.g. f(z)σ8(z)), or dD/d ln a.
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The derivatives in Eq. (66) are particularly simple

∂ lnP

∂b
=

2

b+ fµ2
,

∂ lnP

∂f
=

2µ2

b+ fµ2
,

∂ lnP

∂σ2
z

= −k2µ2

(68)
independent of the shape of the linear theory power spectrum,
and hence of the spectral index and transfer function. Since we
hold the normalization of the power spectrum fixed for these
derivatives, the fractional error on f(z)σ8(z) is equal to that
on f in our formalism. The bias and f turn out to be anti-
correlated, with a correlation coefficient of 70− 75%, depending
on the precise sample.

Using multiple populations of objects of very different biases,
and their cross correlations, improves the constraints on bi and
f if you don’t have to pay any shot-noise penalty. Usually it
doesn’t help. Note, what is most of interest is the constraint on
f , not the constraint on β. Even perfect knowledge of β doesn’t
help unless you know b, and you can only know b to precision√

2/N .
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