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This is a brief summary of the Standard Model of particle physics, with an emphasis on under-
standing the underlying assumptions that go into it. It is important to understand which aspects follow
from general principles, which aspects are put in by hand, and which of these are the most important
shortcomings. There is a lot here, and I imagine that to some this is all new and confusing. My hope
for these people is that you learn the general structure of the particles that make up the world around
us. For those with a little more familiarity with particle physics, I hope this will help you to begin
to understand not just what the “fundamental” particles and interactions are, but why nature might
behave this way.

1 Lorentz Invariance

The first input into the Standard Model is Lorentz invariance, which has many consequences, but in
particular that nature should be described by a local, scalar Lagrangian constructed out of represen-
tations of the Lorentz group SO(3,1). This says that the particles of nature must transform in a nice
way under Lorentz transformations, and that their dynamics must be governed by a Lorentz-invariant
action. The representations of SO(3,1) are quite similar to the representations of SO(3) that are familiar
to us, so there are scalars, spinors, vectors and so on, but there is some subtly. The most important
difference is that spin—% fermions are described by a four-component Dirac spinor 1 which describes
both a particle and its antiparticle. A Dirac spinor in four dimensions is equivalent to either two Weyl
spinors, one left- and one right-handed, or to two real Majorana spinors.
From all these representations, we are left with a Lagrangian of the form

L =3¢ j¢'..¢

where ¢ denotes all the possible fields in the theory (and their derivatives), and the ¢;.._; denotes both
a kind of Klebsch-Gordon coefficient to make a scalar out of the component fields, and the appropriate
coupling constant.

2 Renormalization

The next important input into the theory is that it must be quantum mechanical, which in turn brings
about the notion of renormalization. Renormalization is a complicated topic to understand in detail,
but it is mostly about scaling: how do things change with energy scale? To really understand this, we
would need to understand the quantum effects such as running of coupling constants, but it turns out
that a lot of renormalization can be understood just from looking at dimensional analysis. We will work
in units of A = ¢ = 1 in which any quantity may be assigned a single dimension, its mass-dimension.
[E] = [m] = [1/L] = 1.



Since the action S= [ d*zL must be dimensionless (it appears in the exponent in the path-integral),
the Lagrangian must have dimension 4 to cancel that of d*z. Related to the fact that bosons have two
derivatives in their kinetic terms and fermions one, these fields have a canonical dimension [boson]=1 and
[fermion]= 3/2. If the Lagrangian contains some composite operator O; with coefficient g;, dimensional
analysis requires that g; ~ A*~% where A is the fundamental scale in the theory, to be taken near the
Planck scale. We see that if d; = [O;] > 4 the coupling constant g; is naturally suppressed by a very
large number, and we need not consider such a term in our Lagrangian.

Consideration of renormalization naturally eliminates all but a small number of possible interactions
(the “Renormalizable” terms), leaving the kinetic terms and only the following Lorentz-invariant inter-
actions constructed out of scalars ¢, spinors v, vectors A, and a set of 4x4 matrices y* analogous to
the Pauli spin matrices:
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This is a dramatic simplification, but we can actually go further. Renormalization tells us that the
vector field mass term, A, A*, must either have a coefficient ~ M?)l, or must vanish. Since a Planck-mass
particle would be impossible to produce at our energy scales, any vector field in the Standard Model
must be massless. This is an extremely important result, because massless vector fields have only two
states (helicities or polarizations) rather that the three S, = £1,0 states of the massive vector particle.
In order to remove this extra degree of freedom, any fundamental theory with vector particles must
have a local gauge symmetry, A, — A, + Oy, which can absorb the unphysical degree of freedom. This
is why gauge invariance plays such an important role in the Standard Model. It eliminates the (A4,)"
terms and imposes strong relationships among the remaining terms in the action.

3 The Standard Model

We have seen that Lorentz invariance and Renormalization dramatically constrain the content of the
Standard Model to be scalars, fermions, and gauge bosons interacting according to a limited number
of Lorentz-invariant, renormalizable, and gauge-invariant interaction terms. To specify the Standard
Model, we must choose the matter content and gauge group to match that observed experimentally.
The gauge group is G=SU(3)xSU(2) xU(1) with gauge bosons G, W[L and B, respectively. This group
couples to three generations of matter consisting of five types of Weyl spinor “qudle” and to the Higgs



boson ¢ according to the following representations:
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We see that the quarks qr, = (ur, dr), u, and dg are the only “colored” matter particles, coming in
the red, green and blue of the SU(3) 3 representation, and that only the left-handed fermions ¢;, and
the lepton I;, = (vr,, er) feel the weak force SU(2), while their right-handed counterparts do not.

The index i=1,2,3 on the fermions represents the generation, or flavor. For example e' is the electron,
while e? =  is the muon and e® = 7, the heavier, but otherwise identical cousins of the electrons.

The most general Lagrangian that we can write down that has the above particle content and gauge
symmetries is the Standard Model:
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where D, =0, —1 22:1 g(")A,(ln) is the covariant derivative, and

Fi) = AL —0,AfY + (A, Al
= Fe™T

is the matrix-valued field-strength tensor for the gauge field corresponding to SU(n) (n=2,3) or the
hypercharge U(1) (n=1), and ¢(™ is the coupling constant appropriate to each gauge group. The T((ln)
are the appropriate representations of the generators of each group, a diagonal matrix Y in the case of
hypercharge.

This may look very complicated, but the equations generated from this (plus the Einstein-Hilbert
action £ = \/HR) reproduce every experiment ever conducted (prior to 1998; see below), including
some with twelve-digit accuracy. It is amazing that so few assumptions could lead to a theory from
which all else can in principle be derived. It is surely a pinnacle of human achievement.

Let’s look at it a bit closer. The first line contains the covariant kinetic terms for the gauge
particles, fermions and Higgs boson respectively. The next line is the Yukawa couplings ~ ¢1p1) between
the Higgs ¢ and the qudle fermions. The A, , 4 are 3x3 matrices of coupling constants with indeces i, j



running over the three generations of “flavor space”. The last term is the Higgs potential —V'(¢$) with
negative quadratic term. Note in particular that SU(2) gauge-invariance has prohibited fermion mass
terms, which in terms of Weyl spinors would look like m(érer + h.c.). In fact, there is only a single
dimensionful parameter in the whole standard model, 2.

3.1 Spontaneous Symmetry Breaking

All the masses of the Standard Model are generated by spontaneous symmetry breaking. The Higgs’
potential drives it to acquire an expectation value which feeds a mass to all the fermions through the
Yukawa terms. Replace ¢ with (¢) and the Yukawa terms become mass terms that are otherwise not

allowed until SU(2) is broken. The gauge bosons Wl}, W,f and Z, = (g(Q)WM - g(l)BN)/ 9(21) +g(22)

become massive through the ~ A, A#($)? term in the Higgs’ kinetic term. The other linear combination
Ay = (g(l)Wu + Q(Q)Bu)/ 9(21) + 9(22)

remains massless and is the photon we know and love, which is the gauge boson of U(1) left unbroken
called “charge” with the diagonal generator Q = T? + Y.

3.2 Global Symmetries: Baryon and Lepton Number, Flavor and CP

The above action happens to have, or almost have, a number of global symmetries that we didn’t put in
by hand. Among these are baryon and lepton number, corresponding to a phase rotation of all quarks
together, or all leptons (electrons and neutrinos) together. Baryon number conservation is what protects
the proton from decay to a lighter lepton, and it is a nice accident that it emerges on its own. Two other
global symmetries, flavor conservation and CP (simultaneous Charge and Parity reversal) are almost
conserved, but not quite. As we have written it, the Yukawa couplings, and thus the fermion mass
matrices, are not diagonal in flavor space. We should make a change of basis, mixing the generations, to
diagonalize the mass matrix. This change of basis leaves most of the Lagrangian invariant, but it leaves
its footprints in the coupling of fermions to the weak force, introducing flavor-changing and CP-violating
CKM matrices. The BaBar experiment currently under way at SLAC is currently confirming that all
the CP violation observable in nature indeed comes from these CKM matrices.

4 Shortcomings of the Standard Model: Good news and bad news

Now let us reexamine some of the assumptions that brought us to this model. We’ll see that some
of what looked especially arbitrary is not, and some things that looked harmless are actually very
problematic.

4.1 The 0-Term

First, it should be noted that there is actually one additional object that could be added to the above
Lagrangian, the “f-term”, of the form Ly = %e“”aﬂtr(FWFaﬂ), which is omitted by hand. This
is somewhat reasonable because it can be written as a total derivative, Ly = d,wks for a particular
one-form wks, and so only enters the action as a boundary term. In fact, topological defects called
instantons do make this term relevant. Explaining its absence is related to an outstanding problem
called the strong-CP problem, for which hypothetical pseudo-scalar particles called axions present one
solution.



4.2 Charge Assignments and Anomalies

It turns out that gauge invariance places an additional constraint on the Lagrangian that actually makes
a lot of the arbitrary-seeming particle content of the Standard Model a lot more natural. This constraint
is called anomaly cancellation. The Lagrangian we have constructed is gauge invariant at the classical
level, but it is a very subtle question whether this gauge invariance will be preserved upon quantization.
Quantum mechanical violations of symmetries are called anomalies, and when anomalies violate a gauge
symmetry, the theory is considered terminally ill, because the gauge symmetry needed to remove the
unphysical S, = 0 polarization of the gauge particles is absent, and unitarity is violated.

Analysis of anomalies is a bit technical, but it turns out that anomalies cancel automatically in two
cases: when the theory is parity symmetric, and when the gauge group is SU(2). This fits perfectly with
the fact that the SU(3) couplings are parity symmetric, and that it is SU(2) whose couplings are totally
parity violating, making a lot of the above assignments a lot more plausible. But in order for the full
theory to be anomaly-free, there are four different conditions that must be satisfied by the hypercharges.
It turns out that the apparently random assignments of hypercharge Y above are actually one of the
simplest solutions to these conditions, with cancellations occurring between the different particles in
each generation. Anomalies by no means pick out the Standard Model particle content uniquely, but
they make it a lot less arbitrary. In particular, anomalies require that whatever the particle content, it
must come in generations.

4.3 Why Three Generations?

Our existence is dependent on CP violation, in order to avoid annihilation of all the particles and
antiparticles of the early universe. All the CP violation that is observed comes from the flavor rotation
matrices. If there were two or fewer generations, the rotation matrices would be simpler and this CP
violation would be absent. This is an unpleasantly anthropic and incomplete explanation for the number
of generations, but still an interesting fact worth knowing.

4.4 The Fine-Tuning Problem

There is actually one particularly big cheat in the above Lagrangian. We argued away explicit mass
terms of vector bosons based on renormalization arguments, but we kept the Higgs boson mass term
1?2 that sets the scale of all other physics. Renormalization tells us that quantum corrections should
generate a Planck-scale mass for this, pushing the entire theory 15 orders of magnitude higher. We force
this theory to make sense by tuning the Planck-scale “bare” mass to precisely cancel these quantum
corrections, so that the physical mass is something like

M}, = 1.00000000000000000000000000000001 x 10*°GeV? — M.

From this point of view, the Higgs mass had to be chosen very precisely in order to give any physics below
the Planck scale at all. This is clearly unacceptable, but fortunately has a solution: supersymmetry
protects the Higgs mass against severe quantum corrections and eliminates the need for fine-tuning. 1
will leave to next week (?7) a discussion of supersymmetry, but the fine-tuning problem is one of the
greatest reasons to think that supersymmetry must exist near the electroweak scale.

4.5 Why the Split Among the Generations?

Why are the eigenvalues of the mass matrices so different from each other, which is to say, why is
there a splitting of the masses of the three generations by factors of ~100?7 Note that this is different
from wondering why quarks are so much heavier than leptons, which can be explained by the fact that



quarks couple to the strong force and so receive stronger quantum corrections to their masses. There
is no single widely accepted solution to this problem, but it is a question of only a couple of orders of
magnitude. It’s something people think about, but don’t fret about. On the other hand, people do
worry about

4.6 The Hierarchy Problem

Why is the electroweak scale so far below the Planck scale? Why is there a gap of fifteen orders of
magnitude between what is thought of as the fundamental scale of physics, M ~ 10'GeV, and the
scale of most of our physics Mgw ~ 100GeV? This issue is independent of the fine tuning problem
above, and isn’t solved by supersymmetry. There are a lot of different ideas on it, including the extra-
dimensions solutions of ADD and Randall-Sundrum that we mentioned in a past lecture, but these
both have problems of their own. A rough outline of a solution that strikes me as plausible comes
out of the fact that renormalization tells us that parameters in the Lagrangian “run” with energy
scale, often logarithmically. It is plausible that a mass parameter originally on the Planck scale slowly
runs lower and lower. Over many orders of magnitude, this running could push it negative, triggering
supersymmetry breaking followed by electroweak symmetry breaking and the generation of the mass
scales central to our physics. But understanding supersymmetry breaking remains one of the biggest
problems in phenomenology today.

4.7 Neutrino masses

We stated above that the Standard Model explains every experimental result up to 1998. In 1998,
neutrino oscillation experiments confirmed that neutrinos must have very small masses, likely on the
order of an eV. This requires the addition of three extra particles vg ¢, , to the content of the Standard
Model, because massive particles need both left- and right-handed components to fill out the spin-up
and spin-down states. The presence of these states actually makes the Standard Model even a bit
cleaner, as it fills a hole: now there are the same number of quark and lepton states. There is even
a really nice explanation of such a small neutrino mass known as the see-saw mechanism, which takes
advantage of the fact that right-handed neutrinos are totally uncharged, and therefore allow what is
called a Majorana mass term, prohibited by gauge invariance for every other particle.



