The Phase Shift

Imagine a particle of mass m and energy E incident on a square potential

$$
V(x)=\left\{\begin{array}{cl}
V_{0} & \text { if }-a<x<a \tag{1}\\
0 & \text { otherwise }
\end{array}\right.
$$

with $V_{0}<E$. Label the region $x<-a$ as $I,-a<x<a$ as $I I$ and $x>a$ as $I I I$. Since $V(x)$ is even we can decompose the solutions into even and odd parity modes which in region $I I$ are

$$
\begin{equation*}
\psi_{I I, e}=\cos \kappa x \quad \text { and } \quad \psi_{I I, o}=\sin \kappa x \tag{2}
\end{equation*}
$$

where $\kappa=\sqrt{2 m\left(E-V_{0}\right)}$ and we have set $\hbar=1$ for simplicity. For now we consider only the even mode, the argument for the odd mode is completely analogous.

In regions I and $I I I, \psi_{I I, e}$ must match onto even functions oscillating with period $2 \pi / k$ where $k=\sqrt{2 m E}$ so

$$
\begin{align*}
\psi_{I, e} & =A \cos \left(k x-\delta_{e}\right) \tag{3}\\
\psi_{I I I, e} & =A \cos \left(k x+\delta_{e}\right) \tag{4}
\end{align*}
$$

where A and δ_{e} are constants. This satisfies the wave equation in all 3 regions and has the right parity. The only thing left is to match the function and its first derivative at $x= \pm a$. At $x=a$ we have

$$
\begin{align*}
\cos \kappa a & =A \cos \left(k a+\delta_{e}\right) \tag{5}\\
-\kappa \sin \kappa a & =-k A \sin \left(k a+\delta_{e}\right) \tag{6}
\end{align*}
$$

from which we can solve for the phase shift as

$$
\begin{equation*}
\tan \left(k a+\delta_{e}\right)=\frac{\kappa}{k} \tan \kappa a \tag{7}
\end{equation*}
$$

and then use Eq. (5) to solve for A. If we were to match at $x=-a$ we would obtain the identical equations.

An argument completely analogous to the above for the odd modes gives

$$
\begin{equation*}
\tan \left(k a+\delta_{o}\right)=\frac{k}{\kappa} \tan \kappa a \tag{8}
\end{equation*}
$$

