Physics 137A, Spring 2003

Course Outline

Instructor: Martin White, 561-C Campbell

GSI: Peter Shepard (pgs@socrates)

Lectures: Tu/Th 9:30-11:00am, 343 LeConte Office Hours-MW: Th 11-12 (561 Campbell)

Office Hours-PS: M 1pm & Tu 11am (281 LeConte),

Th 11-12 (Milano)

Exams: problem sets (30%), midterm (30%), fi-

nal (40%)

Texts: Griffiths (Merzbacher, Sakurai, Baym)

1. Fundamentals of Quantum Mechanics

- (a) Interference and uncertainty
- (b) Linear algebra, Hilbert spaces and braket notation, connection with wave mechanics
- (c) Postulates of QM, precise statement of Uncertainty Principle
- (d) Time evolution and the Schrödinger equation.
- (e) Schrödinger and Heisenberg pictures, spin precession and the non-classicality of the spin-vector
- (f) Connection with classical mechanics, Ehrenfest and virial theorems.
- (g) Path integral formulation.
- 2. One-dimensional problems in Wave Mechanics
 - (a) Connection of bra-ket notation with Wave Mechanics, stationary states
 - (b) Conservation of probability current and speading of the wavepacket
 - (c) Escape proof box, bound states, symmetry of states, double well

- (d) Scattering theory in 1D, phase shift, resonances and bound states, evolution of a wave packet
- (e) Nanocircuits and the Quantum Point Contact, Landauer conductance
- (f) Harmonic oscillator, raising and lowering operators, coherent states
- (g) Example of decoherence, Schrödinger's cat

3. Interlude

- (a) Quantum computers
- (b) Quantum cryptography

4. WKB Methods

- (a) The classical limit and semi-classical methods
- (b) Matching conditions and integral quantization condition
- (c) Quantum bouncing ball and evanescent waves
- (d) Barrier penetration
- (e) WKB and the virial theorem
- 5. Many particles and many dimensions
 - (a) Many particle systems
 - (b) Systems of more than 1D

6. Hydrogen atom

- (a) Central potentials
- (b) Separation of variables
- (c) Energy eigenvalues/eigenfunctions