
BEE2: a multi-purpose computing platform for radio telescope DSP applications

Chen Chang, John Wawrzynek, Bob Brodersen Dan Werthimer, Melvyn Wright EECS, UC Berkeley Space Science Laboratory, SETI Institute Radio Astronomy Laboratory

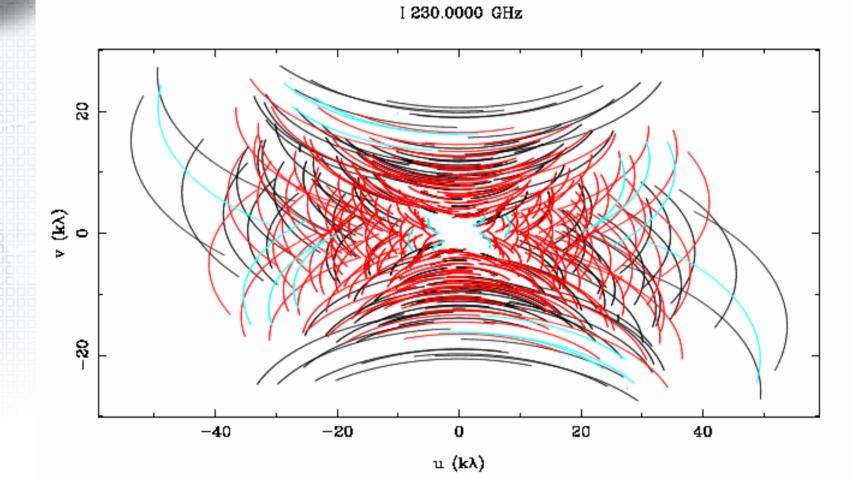
Radio Astronomy Correlators

Radio Astronomy Correlators and Data Rates

UC Berkeley

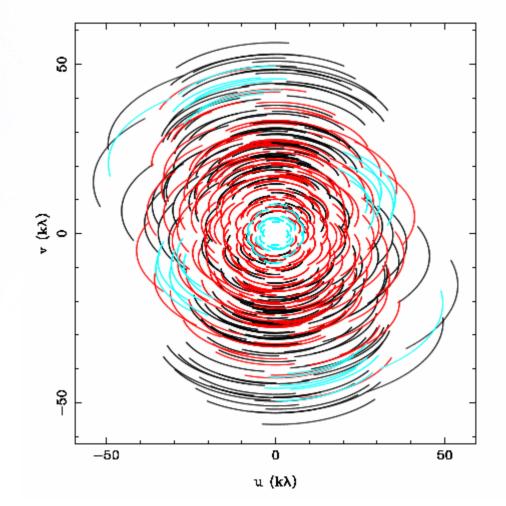
Polarization, Mosaicing, and time multiplexing

- Polarization required for many astrophysical situations
- Single polarization requires time multiplexing
- Polarizer is frequency and polarization dependent
- Polarization observation are inefficient and difficult to schedule
- Mosaicing requires time multiplexing
- Polarization, mosaicing, and multiple spectral lines require multiple tracks
- Calibration of dual polarization is more robust
- Dual polarization improves sensitivity for spectral lines

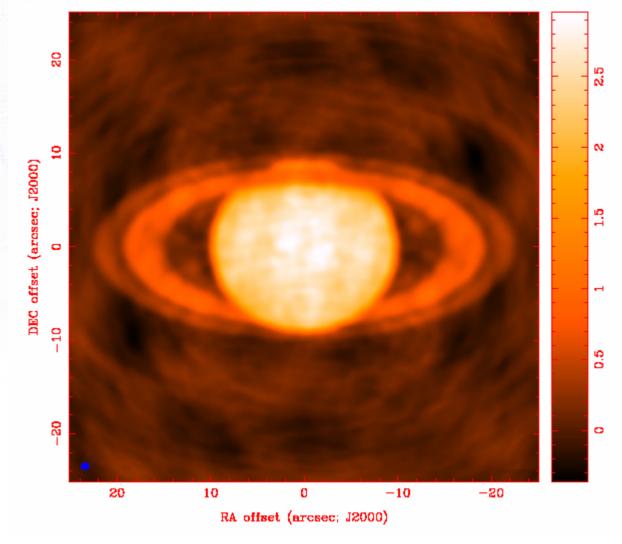

Relative performance of CARMA

Telescope	CARMA-15	CARMA-23	SMA	ALMA	ACA	IRAM PdB
nants	6x10.4 + 9x6.1	+ 8x3.5	8x6.1	64x12	4x12 + 12x7	6x15
collecting area $[m^2]$	773	850	230	7238	914	1060
average diameter [m]	8.1	6.9	6.1	12	8.5	15
nants x diameter	122	158	49	768	136	90
number of baselines	105	253	28	2016	120	15
$\max baseline/antdiam$	328	571	82	375	8	58
polarizations	1	2	2	2	2	2
$\operatorname{continuum BW} / \operatorname{pol} [GHz]$	4	8	2	8	8	4
spectral windows /pol	8	8	6x4	8	8	8
window bandwidths [MHz]	2 - 500	2 - 500	82	31 - 2000	31 - 2000	20 - 320
spectral channels/window	64	64	64 - 2048	2048	8192	64 - 512
total spectral channels/pol	512	512	3072x2	16384	65536	4096

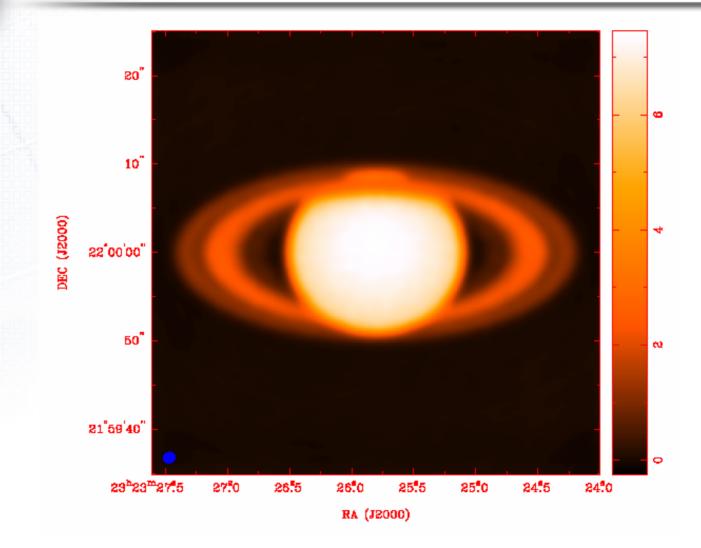
CARMA's role


- Wide range of spatial scales
 - Heterogeneous array of 10.4, 6.1 and 3.5 m antennas
 - Antenna spacings from 4m to 2km
- Spatial frequencies sampled by interferometer
 - Multiple primary beams decouple source from primary beam illumination
- Calibration of single dish and heterogeneous array from overlap in spatial frequencies
- Excellent UV coverage using CARMA and SZA

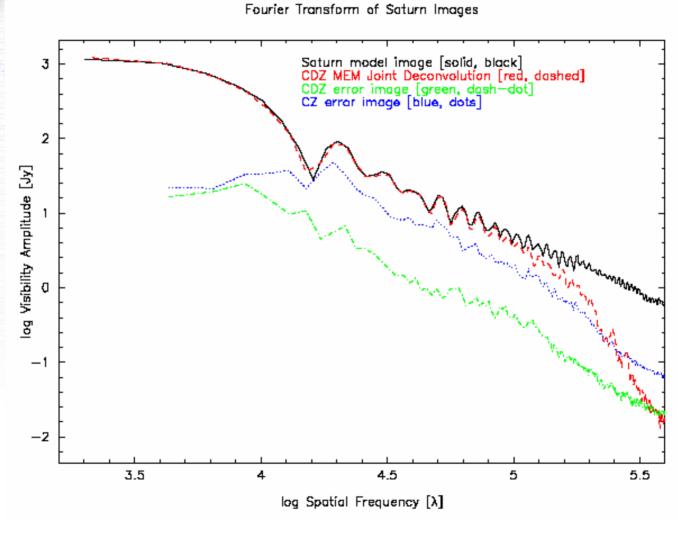
CARMA-23 UV coverage dec=-30


CARMA-23 UV coverage dec=+30

I 230.0000 GHz


Dec 12, 2004

CZ without 3.5~6.1m spacings



UC Berkeley

CZ + DZ including 3.5~6.1m spacings

Fourier Transform of Saturn Images

UC Berkeley

CARMA as R&D array

- Accessible to instrumentalists and students
- Facilitate adding user instruments and software
- General purpose DSP backend provides access to a wider range of users, by lowering the barrier of entry
 - Pulsar processing
 - RFI mitigation
 - Beamforming

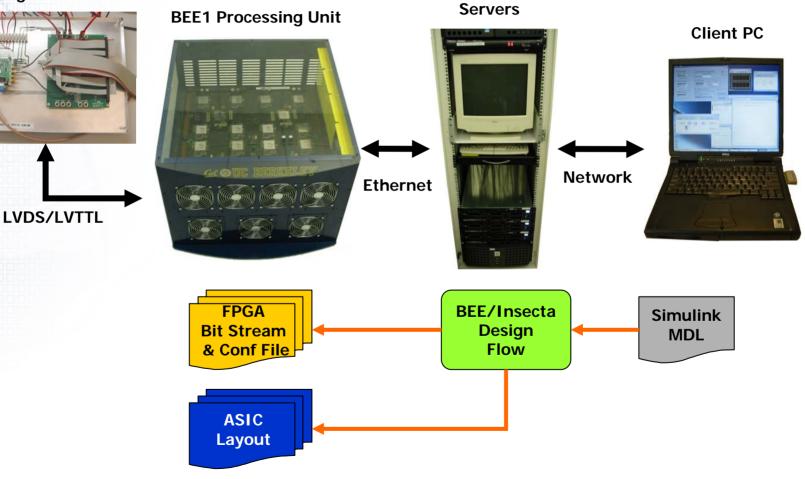
Berkeley Wireless Research Center

UC Berkeley

A partnership of UC Berkeley researchers, industry, and government

- 15 Industrial Members:
 - Atmel Corporation
 - Cadence Design Systems
 - Conexant Systems
 - Ericsson Radio Systems
 - Hewlett Packard Company
 - Hitachi Ltd.
 - Infineon Technologies
 - Intel Corporation
 - NEC Corporation
 - Philips Research
 - Qualcomm Incorporated
 - Samsung Electronics
 - STMicroelectronics
 - Sun Microsystems
 - Xilinx Incorporated
- Other Funding:
 - DARPA, AFRL, NSF, ONR, MARCO, MURI, CA Energy Com.

Dec 12, 2004


- Operational since Feb.1999
- 12000 sq. feet facility located downtown Berkeley, CA
- 60 UCB EECS Graduate Students, 11 Faculty

BEE1 System Overview

Analog Front-end

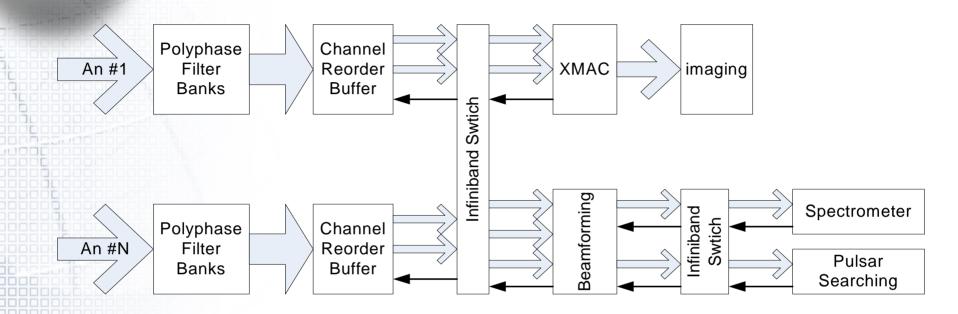
BEE1 system development time

- system conception & specification: 2 FTE month
 PCB design (schematics/layout): 12 FTE month
 PCB fabrication
- Hardware system testing and characterization: 2
 FTE month
- Software system development (CAD tools, User Interface, Linux OS): 12 FTE month

BEE1 application development time

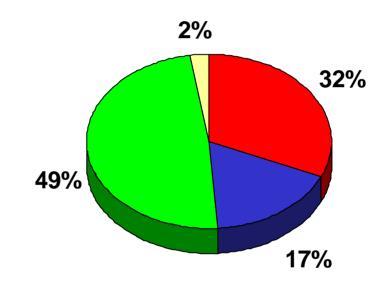
- 1 Mbps QPSK Transceiver: 1 FTE month
 BCJR decoder: 3 FTE month
- IDCT MPEG encoder: 4 FTE month
- 4X4 SVD block: 6 FTE month

BEE2 system design philosophy


- Compute-by-the-yard
 - Modular computing resource
 - Flexible interconnect architecture
 - On-demand reconfiguration of computing resources
- Economy-of-scale
 - Ride the semiconductor industry Moore's Law curve
 - All COTS components, no specialized hardware
 - Survival of application software using technology independent design flow

BEE2 Module: PCB board

- Over 250 billion CMAC/s
- Up to 12.8 GBps memory bandwidth, with maximum 8 GB capacity
- 360 Gbps I/O bandwidth in 18 Infiniband 4X connectors
- 14X17 inch 22 layer PCB (FR4, 4/4 mils)


Unified Digital Processing Architecture

- Distributed per antenna spectral channel processing
- Multiple reconfigurable backend application processing
- Commercial packet switched interconnect
- Backend data pulling through remote DMA access
- Locally synchronous, global asynchronous

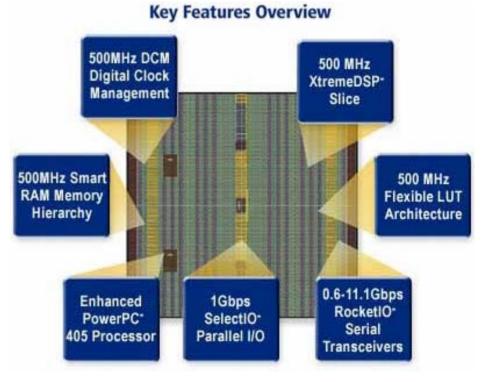
BEE2 subsystem hardware cost

- BEE2 module: ~\$20K
 - PCB: \$6.5K
 - DDR2 Memory: \$3.5K
 - FPGA: \$10K
 - Mechanical, etc: \$0.5K
- Infiniband switch
 - 24-port IB: \$8K
 - 96-port IB: \$60K
 - 2 meter cable: \$107
 - 12 meter cable: \$333

BEE2 correlator hardware cost table

Name	COBRA	CARMA First Light (15,1.5,1,96)	CARMA (15,4,1,128)	CARMA (15,4,1,256)	CARMA (15,4,1,512)	CARMA (23,4,2,256)	CARMA (23,4,2,512)
Antenna	6	15	15	15	15	23	23
Bandwidth	4	1.5	4	4	4	4	4
Polarization	1	1	1	1	1	2	2
Baselines	15	105	105	105	105	253	253
PFB ch/IF band	32	96	128	256	512	256	512
IF bands	8	3	8	8	8	8	8
FPGA (PFB)	1	2	4	8	15	23	46
FPGA (XMAC)	3	7	17	17	17	81	81
BEE2 (PFB)	1	1	1	2	4	6	12
BEE2 (XMAC)	1	2	5	5	5	21	21
Digitizer boards	24	22.5	60	60	60	184	184
IB cables	62	77	196	204	218	738	784
IB switches	1	2	4	4	5	16	18
\$ PFB (K)	20	20	20	40	80	120	240
\$ XMAC (K)	20	40	100	100	100	420	420
\$ cables (K)	6	8	20	20	22	74	78
\$ switch (K)	8	16	32	32	40	128	144
\$ digitizer (K)	120	68	180	180	180	552	552
\$ total(K)	174	151	352	372	422	1,294	1,434
Dec 12-2	2004	*	UC Berk		-		20

Dec 12, 2004


Project timeline

- BEE2 PCB layout design (9/2004, done)
- PCB fabrication of 2 prototype boards (12/2004, done)
- 2 compute nodes testing and characterization (1/2005)
- 10 node system manufacturing (4/2005)
- Demonstration applications:
 - SETI billion channel spectrometer (6/2005)
 - 32 antenna 500MHz dual polarization correlator (12/2005)
 - Wide-field imager (12/2005)

٠

Future: BEE3 in sight!

- Xilinx just announced Virtex-4 family
 - 4~6X performance improvement
- DDR2 Memory specification up to 800MHz, 4GB per DIMM
 - 100 Gbps Infiniband specification under development
- Direct scaling of BEE2 architecture
- Implementation possible in 1 years

Staged Development of Peta-BEE

machine	BEE2 prototype	BEE2 full-rack	BEE3 full-rack	BEE4 prototype	BEE4 full-rack
year	Q1 2005	Q3 2005	Q1 2006	Q1 2007	Q3 2007
chip technology	130 nm	130 nm	90 nm	65 nm	65nm
fixed-point perf.	1.6-2 TOPS	32-40 TOPS	128-160 TOPS		2048-2560 TOPS
FP performance	64-80 GFLOPS	1.3-1.6 TFLOPS	5.12-6.4 TFLOPS		82-122 TFLOPS
with acceleration	Ban				(400-600 TFLOPS)
special				custom masks	custom masks
				stacked-die	stacked-die

UC Berkelev

Notes:

- "prototypes" are 2 modules.
- "full-rack" versions are 40 modules, plus necessary switches, power supplies, etc.
- BEE3 implementation is optional.
- Schedule reflects technical feasibility. Development schedule would build in slack.

Dec 12, 2004

• BEE4:

- Assumes 65nm by late 2006.
- Special masks may be needed to provide proper balance of I/O, memory, and logic.
- Special masks could boost floating point performance (5x) if needed by applications.
- Memory die stacked on FPGAs to gain 4x in density.

23

The BEE2 Team

- Faculty in charge
 - John Wawrzynek
 - Bob W. Brodersen
- Graduate students
 - Chen Chang
 - Pierre-Yves Droz
 - Nan Zhou
 - Yury Markovskiy
 - Zohair Hyder
 - Adam Megacz
 - Alexander Krasnov
 - Hayden So
 - Kevin Camera

- Industrial Liaison
 - Bob Conn (Xilinx)
 - Ivo Bolsens (Xilinx)
- Research associates
 - Dan Werthimer (SSL)
 - Melvyn Wright (UCB, RAL)
 - Don Backer (UCB, astro)
- Technical staff
 - Brian Richards
 - Susan H. Mellers
- Undergraduate student
 - Greg Gibeling